234 lines
7.8 KiB
Text
234 lines
7.8 KiB
Text
-- Authors: Floris van Doorn
|
||
|
||
import homotopy.smash ..move_to_lib .pushout
|
||
|
||
open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge is_trunc function
|
||
|
||
/- smash A (susp B) = susp (smash A B) <- this follows from associativity and smash with S¹ -/
|
||
|
||
/- To prove: Σ(X × Y) ≃ ΣX ∨ ΣY ∨ Σ(X ∧ Y) (notation means suspension, wedge, smash),
|
||
and both are equivalent to the reduced join -/
|
||
|
||
/- To prove: associative -/
|
||
|
||
/- smash A B ≃ pcofiber (pprod_of_pwedge A B) -/
|
||
|
||
variables {A B : Type*}
|
||
|
||
namespace smash
|
||
|
||
definition prod_of_wedge [unfold 3] (v : pwedge A B) : A × B :=
|
||
begin
|
||
induction v with a b ,
|
||
{ exact (a, pt) },
|
||
{ exact (pt, b) },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition wedge_of_sum [unfold 3] (v : A + B) : pwedge A B :=
|
||
begin
|
||
induction v with a b,
|
||
{ exact pushout.inl a },
|
||
{ exact pushout.inr b }
|
||
end
|
||
|
||
|
||
definition prod_of_wedge_of_sum [unfold 3] (v : A + B) : prod_of_wedge (wedge_of_sum v) = prod_of_sum v :=
|
||
begin
|
||
induction v with a b,
|
||
{ reflexivity },
|
||
{ reflexivity }
|
||
end
|
||
|
||
end smash open smash
|
||
|
||
namespace pushout
|
||
|
||
definition eq_inl_pushout_wedge_of_sum [unfold 3] (v : pwedge A B) :
|
||
inl pt = inl v :> pushout wedge_of_sum bool_of_sum :=
|
||
begin
|
||
induction v with a b,
|
||
{ exact glue (sum.inl pt) ⬝ (glue (sum.inl a))⁻¹, },
|
||
{ exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) ⬝ (glue (sum.inr b))⁻¹, },
|
||
{ apply eq_pathover_constant_left,
|
||
refine !con.right_inv ⬝pv _ ⬝vp !con_inv_cancel_right⁻¹, exact square_of_eq idp }
|
||
end
|
||
|
||
variables (A B)
|
||
definition eq_inr_pushout_wedge_of_sum [unfold 3] (b : bool) :
|
||
inl pt = inr b :> pushout (@wedge_of_sum A B) bool_of_sum :=
|
||
begin
|
||
induction b,
|
||
{ exact glue (sum.inl pt) },
|
||
{ exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) }
|
||
end
|
||
|
||
definition is_contr_pushout_wedge_of_sum : is_contr (pushout (@wedge_of_sum A B) bool_of_sum) :=
|
||
begin
|
||
apply is_contr.mk (pushout.inl pt),
|
||
intro x, induction x with v b w,
|
||
{ apply eq_inl_pushout_wedge_of_sum },
|
||
{ apply eq_inr_pushout_wedge_of_sum },
|
||
{ apply eq_pathover_constant_left_id_right,
|
||
induction w with a b,
|
||
{ apply whisker_rt, exact vrfl },
|
||
{ apply whisker_rt, exact vrfl }}
|
||
end
|
||
|
||
end pushout open pushout
|
||
|
||
namespace smash
|
||
|
||
variables (A B)
|
||
definition smash_equiv_cofiber : smash A B ≃ cofiber (@prod_of_wedge A B) :=
|
||
begin
|
||
unfold [smash, cofiber, smash'], symmetry,
|
||
refine !pushout.symm ⬝e _,
|
||
fapply pushout_compose_equiv wedge_of_sum,
|
||
{ symmetry, apply equiv_unit_of_is_contr, apply is_contr_pushout_wedge_of_sum },
|
||
{ intro x, reflexivity },
|
||
{ apply prod_of_wedge_of_sum }
|
||
end
|
||
|
||
definition pprod_of_pwedge [constructor] : pwedge A B →* A ×* B :=
|
||
begin
|
||
fconstructor,
|
||
{ exact prod_of_wedge },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition smash_pequiv_pcofiber [constructor] : smash A B ≃* pcofiber (pprod_of_pwedge A B) :=
|
||
begin
|
||
apply pequiv_of_equiv (smash_equiv_cofiber A B),
|
||
exact (cofiber.glue pt)⁻¹
|
||
end
|
||
|
||
variables {A B}
|
||
|
||
/- commutativity -/
|
||
|
||
definition smash_flip (x : smash A B) : smash B A :=
|
||
begin
|
||
induction x,
|
||
{ exact smash.mk b a },
|
||
{ exact auxr },
|
||
{ exact auxl },
|
||
{ exact gluer a },
|
||
{ exact gluel b }
|
||
end
|
||
|
||
definition smash_flip_smash_flip (x : smash A B) : smash_flip (smash_flip x) = x :=
|
||
begin
|
||
induction x,
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose' smash_flip _ _ ⬝ ap02 _ !elim_gluel ⬝ !elim_gluer ⬝ph _,
|
||
apply hrfl },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose' smash_flip _ _ ⬝ ap02 _ !elim_gluer ⬝ !elim_gluel ⬝ph _,
|
||
apply hrfl }
|
||
end
|
||
|
||
definition smash_comm : smash A B ≃* smash B A :=
|
||
begin
|
||
fapply pequiv_of_equiv,
|
||
{ apply equiv.MK, do 2 exact smash_flip_smash_flip },
|
||
{ reflexivity }
|
||
end
|
||
|
||
/- smash A S¹ = susp A -/
|
||
open susp
|
||
|
||
definition psusp_of_smash_pcircle [unfold 2] (x : smash A S¹*) : psusp A :=
|
||
begin
|
||
induction x using smash.elim,
|
||
{ induction b, exact pt, exact merid a ⬝ (merid pt)⁻¹ },
|
||
{ exact pt },
|
||
{ exact pt },
|
||
{ reflexivity },
|
||
{ induction b, reflexivity, apply eq_pathover_constant_right, apply hdeg_square,
|
||
exact !elim_loop ⬝ !con.right_inv }
|
||
end
|
||
|
||
definition smash_pcircle_of_psusp [unfold 2] (x : psusp A) : smash A S¹* :=
|
||
begin
|
||
induction x,
|
||
{ exact pt },
|
||
{ exact pt },
|
||
{ exact gluel' pt a ⬝ ap (smash.mk a) loop ⬝ gluel' a pt },
|
||
end
|
||
|
||
-- the definitions below compile, but take a long time to do so and have sorry's in them
|
||
definition smash_pcircle_of_psusp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) :
|
||
smash_pcircle_of_psusp (psusp_of_smash_pcircle (smash.mk a x)) = smash.mk a x :=
|
||
begin
|
||
induction x,
|
||
{ exact gluel' pt a },
|
||
{ exact abstract begin apply eq_pathover,
|
||
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
|
||
refine ap02 _ (elim_loop north (merid a ⬝ (merid pt)⁻¹)) ⬝ph _,
|
||
refine !ap_con ⬝ (!elim_merid ◾ (!ap_inv ⬝ !elim_merid⁻²)) ⬝ph _,
|
||
-- make everything below this a lemma defined by path induction?
|
||
apply square_of_eq, rewrite [+con.assoc], apply whisker_left, apply whisker_left,
|
||
symmetry, apply con_eq_of_eq_inv_con, esimp, apply con_eq_of_eq_con_inv,
|
||
refine _⁻² ⬝ !con_inv, refine _ ⬝ !con.assoc,
|
||
refine _ ⬝ whisker_right _ !inv_con_cancel_right⁻¹, refine _ ⬝ !con.right_inv⁻¹,
|
||
refine !con.right_inv ◾ _, refine _ ◾ !con.right_inv,
|
||
refine !ap_mk_right ⬝ !con.right_inv end end }
|
||
end
|
||
|
||
-- definition smash_pcircle_of_psusp_of_smash_pcircle_gluer_base (b : S¹*)
|
||
-- : square (smash_pcircle_of_psusp_of_smash_pcircle_pt (Point A) b)
|
||
-- (gluer pt)
|
||
-- (ap smash_pcircle_of_psusp (ap (λ a, psusp_of_smash_pcircle a) (gluer b)))
|
||
-- (gluer b) :=
|
||
-- begin
|
||
-- refine ap02 _ !elim_gluer ⬝ph _,
|
||
-- induction b,
|
||
-- { apply square_of_eq, exact whisker_right _ !con.right_inv },
|
||
-- { apply square_pathover', exact sorry }
|
||
-- end
|
||
|
||
exit
|
||
definition smash_pcircle_pequiv [constructor] (A : Type*) : smash A S¹* ≃* psusp A :=
|
||
begin
|
||
fapply pequiv_of_equiv,
|
||
{ fapply equiv.MK,
|
||
{ exact psusp_of_smash_pcircle },
|
||
{ exact smash_pcircle_of_psusp },
|
||
{ exact abstract begin intro x, induction x,
|
||
{ reflexivity },
|
||
{ exact merid pt },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose psusp_of_smash_pcircle _ _ ⬝ph _,
|
||
refine ap02 _ !elim_merid ⬝ph _,
|
||
rewrite [↑gluel', +ap_con, +ap_inv, -ap_compose'],
|
||
refine (_ ◾ _⁻² ◾ _ ◾ (_ ◾ _⁻²)) ⬝ph _,
|
||
rotate 5, do 2 (unfold [psusp_of_smash_pcircle]; apply elim_gluel),
|
||
esimp, apply elim_loop, do 2 (unfold [psusp_of_smash_pcircle]; apply elim_gluel),
|
||
refine idp_con (merid a ⬝ (merid (Point A))⁻¹) ⬝ph _,
|
||
apply square_of_eq, refine !idp_con ⬝ _⁻¹, apply inv_con_cancel_right } end end },
|
||
{ intro x, induction x using smash.rec,
|
||
{ exact smash_pcircle_of_psusp_of_smash_pcircle_pt a b },
|
||
{ exact gluel pt },
|
||
{ exact gluer pt },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
|
||
unfold [psusp_of_smash_pcircle],
|
||
refine ap02 _ !elim_gluel ⬝ph _,
|
||
esimp, apply whisker_rt, exact vrfl },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
|
||
unfold [psusp_of_smash_pcircle],
|
||
refine ap02 _ !elim_gluer ⬝ph _,
|
||
induction b,
|
||
{ apply square_of_eq, exact whisker_right _ !con.right_inv },
|
||
{ exact sorry}
|
||
}}},
|
||
{ reflexivity }
|
||
end
|
||
|
||
end smash
|
||
-- (X × A) → Y ≃ X → A → Y
|