769 lines
30 KiB
Text
769 lines
30 KiB
Text
/-
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Floris van Doorn, Egbert Rijke, Jeremy Avigad
|
|
|
|
Constructions with groups
|
|
-/
|
|
|
|
import hit.set_quotient .subgroup ..move_to_lib types.equiv
|
|
|
|
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod trunc function equiv is_equiv
|
|
open property
|
|
|
|
namespace group
|
|
variables {G G' : Group}
|
|
(H : property G) [is_subgroup G H]
|
|
(N : property G) [is_normal_subgroup G N]
|
|
{g g' h h' k : G}
|
|
(N' : property G') [is_normal_subgroup G' N']
|
|
variables {A B : AbGroup}
|
|
|
|
/- Quotient Group -/
|
|
|
|
definition homotopy_of_homomorphism_eq {f g : G →g G'}(p : f = g) : f ~ g :=
|
|
λx : G , ap010 group_fun p x
|
|
|
|
definition quotient_rel [constructor] (g h : G) : Prop := g * h⁻¹ ∈ N
|
|
|
|
variable {N}
|
|
|
|
-- We prove that quotient_rel is an equivalence relation
|
|
theorem quotient_rel_refl (g : G) : quotient_rel N g g :=
|
|
transport (λx, N x) !mul.right_inv⁻¹ (subgroup_one_mem N)
|
|
|
|
theorem quotient_rel_symm (r : quotient_rel N g h) : quotient_rel N h g :=
|
|
transport (λx, N x) (!mul_inv ⬝ ap (λx, x * _) !inv_inv)
|
|
begin apply subgroup_inv_mem r end
|
|
|
|
theorem quotient_rel_trans (r : quotient_rel N g h) (s : quotient_rel N h k)
|
|
: quotient_rel N g k :=
|
|
have H1 : N ((g * h⁻¹) * (h * k⁻¹)), from subgroup_mul_mem r s,
|
|
have H2 : (g * h⁻¹) * (h * k⁻¹) = g * k⁻¹, from calc
|
|
(g * h⁻¹) * (h * k⁻¹) = ((g * h⁻¹) * h) * k⁻¹ : by rewrite [mul.assoc (g * h⁻¹)]
|
|
... = g * k⁻¹ : by rewrite inv_mul_cancel_right,
|
|
show N (g * k⁻¹), by rewrite [-H2]; exact H1
|
|
|
|
theorem is_equivalence_quotient_rel : is_equivalence (quotient_rel N) :=
|
|
is_equivalence.mk quotient_rel_refl
|
|
(λg h, quotient_rel_symm)
|
|
(λg h k, quotient_rel_trans)
|
|
|
|
-- We prove that quotient_rel respects inverses and multiplication, so
|
|
-- it is a congruence relation
|
|
theorem quotient_rel_resp_inv (r : quotient_rel N g h) : quotient_rel N g⁻¹ h⁻¹ :=
|
|
have H1 : g⁻¹ * (h * g⁻¹) * g ∈ N, from
|
|
is_normal_subgroup' g (quotient_rel_symm r),
|
|
have H2 : g⁻¹ * (h * g⁻¹) * g = g⁻¹ * h⁻¹⁻¹, from calc
|
|
g⁻¹ * (h * g⁻¹) * g = g⁻¹ * h * g⁻¹ * g : by rewrite -mul.assoc
|
|
... = g⁻¹ * h : inv_mul_cancel_right
|
|
... = g⁻¹ * h⁻¹⁻¹ : by rewrite algebra.inv_inv,
|
|
show g⁻¹ * h⁻¹⁻¹ ∈ N, by rewrite [-H2]; exact H1
|
|
|
|
theorem quotient_rel_resp_mul (r : quotient_rel N g h) (r' : quotient_rel N g' h')
|
|
: quotient_rel N (g * g') (h * h') :=
|
|
have H1 : g * ((g' * h'⁻¹) * h⁻¹) ∈ N, from
|
|
normal_subgroup_insert r' r,
|
|
have H2 : g * ((g' * h'⁻¹) * h⁻¹) = (g * g') * (h * h')⁻¹, from calc
|
|
g * ((g' * h'⁻¹) * h⁻¹) = g * (g' * (h'⁻¹ * h⁻¹)) : by rewrite [mul.assoc]
|
|
... = (g * g') * (h'⁻¹ * h⁻¹) : mul.assoc
|
|
... = (g * g') * (h * h')⁻¹ : by rewrite [mul_inv],
|
|
show N ((g * g') * (h * h')⁻¹), from transport (λx, N x) H2 H1
|
|
|
|
local attribute is_equivalence_quotient_rel [instance]
|
|
|
|
variable (N)
|
|
|
|
definition qg : Type := set_quotient (quotient_rel N)
|
|
|
|
variable {N}
|
|
|
|
local attribute qg [reducible]
|
|
|
|
definition quotient_one [constructor] : qg N := class_of one
|
|
definition quotient_inv [unfold 3] : qg N → qg N :=
|
|
quotient_unary_map has_inv.inv (λg g' r, quotient_rel_resp_inv r)
|
|
definition quotient_mul [unfold 3 4] : qg N → qg N → qg N :=
|
|
quotient_binary_map has_mul.mul (λg g' r h h' r', quotient_rel_resp_mul r r')
|
|
|
|
section
|
|
local notation 1 := quotient_one
|
|
local postfix ⁻¹ := quotient_inv
|
|
local infix * := quotient_mul
|
|
|
|
theorem quotient_mul_assoc (g₁ g₂ g₃ : qg N) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
|
|
begin
|
|
refine set_quotient.rec_prop _ g₁,
|
|
refine set_quotient.rec_prop _ g₂,
|
|
refine set_quotient.rec_prop _ g₃,
|
|
clear g₁ g₂ g₃, intro g₁ g₂ g₃,
|
|
exact ap class_of !mul.assoc
|
|
end
|
|
|
|
theorem quotient_one_mul (g : qg N) : 1 * g = g :=
|
|
begin
|
|
refine set_quotient.rec_prop _ g, clear g, intro g,
|
|
exact ap class_of !one_mul
|
|
end
|
|
|
|
theorem quotient_mul_one (g : qg N) : g * 1 = g :=
|
|
begin
|
|
refine set_quotient.rec_prop _ g, clear g, intro g,
|
|
exact ap class_of !mul_one
|
|
end
|
|
|
|
theorem quotient_mul_left_inv (g : qg N) : g⁻¹ * g = 1 :=
|
|
begin
|
|
refine set_quotient.rec_prop _ g, clear g, intro g,
|
|
exact ap class_of !mul.left_inv
|
|
end
|
|
|
|
theorem quotient_mul_comm {G : AbGroup} {N : property G} [is_normal_subgroup G N] (g h : qg N)
|
|
: g * h = h * g :=
|
|
begin
|
|
refine set_quotient.rec_prop _ g, clear g, intro g,
|
|
refine set_quotient.rec_prop _ h, clear h, intro h,
|
|
apply ap class_of, esimp, apply mul.comm
|
|
end
|
|
|
|
end
|
|
|
|
variable (N)
|
|
definition group_qg [constructor] : group (qg N) :=
|
|
group.mk _ quotient_mul quotient_mul_assoc quotient_one quotient_one_mul quotient_mul_one
|
|
quotient_inv quotient_mul_left_inv
|
|
|
|
definition quotient_group [constructor] : Group :=
|
|
Group.mk _ (group_qg N)
|
|
|
|
definition ab_group_qg [constructor] {G : AbGroup} (N : property G) [is_normal_subgroup G N]
|
|
: ab_group (qg N) :=
|
|
⦃ab_group, group_qg N, mul_comm := quotient_mul_comm⦄
|
|
|
|
definition quotient_ab_group [constructor] {G : AbGroup} (N : property G) [is_subgroup G N]
|
|
: AbGroup :=
|
|
AbGroup.mk _ (@ab_group_qg G N (is_normal_subgroup_ab _))
|
|
|
|
definition qg_map [constructor] : G →g quotient_group N :=
|
|
homomorphism.mk class_of (λ g h, idp)
|
|
|
|
definition ab_qg_map {G : AbGroup} (N : property G) [is_subgroup G N] : G →g quotient_ab_group N :=
|
|
@qg_map _ N (is_normal_subgroup_ab _)
|
|
|
|
definition is_surjective_qg_map {A : Group} (N : property A) [is_normal_subgroup A N] :
|
|
is_surjective (qg_map N) :=
|
|
begin
|
|
intro x, induction x,
|
|
fapply image.mk,
|
|
exact a, reflexivity,
|
|
apply is_prop.elimo
|
|
end
|
|
|
|
definition is_surjective_ab_qg_map {A : AbGroup} (N : property A) [is_subgroup A N] :
|
|
is_surjective (ab_qg_map N) :=
|
|
@is_surjective_qg_map _ _ _
|
|
|
|
namespace quotient
|
|
notation `⟦`:max a `⟧`:0 := qg_map _ a
|
|
end quotient
|
|
|
|
open quotient
|
|
variables {N N'}
|
|
|
|
definition qg_map_eq_one {A : Group} {K : property A} [is_normal_subgroup A K] (g : A)
|
|
(H : g ∈ K) : qg_map K g = 1 :=
|
|
begin
|
|
apply set_quotient.eq_of_rel,
|
|
have e : g * 1⁻¹ = g,
|
|
from calc
|
|
g * 1⁻¹ = g * 1 : one_inv
|
|
... = g : mul_one,
|
|
exact transport (λx, K x) e⁻¹ H
|
|
end
|
|
|
|
definition ab_qg_map_eq_one {A : AbGroup} {K : property A} [is_subgroup A K] (g : A) (H : g ∈ K) :
|
|
ab_qg_map K g = 1 :=
|
|
@qg_map_eq_one _ _ _ g H
|
|
|
|
--- there should be a smarter way to do this!! Please have a look, Floris.
|
|
definition rel_of_qg_map_eq_one (g : G) (H : qg_map N g = 1) : g ∈ N :=
|
|
begin
|
|
have e : (g * 1⁻¹ = g),
|
|
from calc
|
|
g * 1⁻¹ = g * 1 : one_inv
|
|
... = g : mul_one,
|
|
rewrite (inverse e),
|
|
apply rel_of_eq _ H
|
|
end
|
|
|
|
definition rel_of_ab_qg_map_eq_one {K : property A} [is_subgroup A K] (a :A) (H : ab_qg_map K a = 1) : a ∈ K :=
|
|
begin
|
|
have e : (a * 1⁻¹ = a),
|
|
from calc
|
|
a * 1⁻¹ = a * 1 : one_inv
|
|
... = a : mul_one,
|
|
rewrite (inverse e),
|
|
have is_normal_subgroup A K, from is_normal_subgroup_ab _,
|
|
apply rel_of_eq (quotient_rel K) H
|
|
end
|
|
|
|
definition quotient_group_elim_fun [unfold 6] (f : G →g G') (H : Π⦃g⦄, N g → f g = 1)
|
|
(g : quotient_group N) : G' :=
|
|
begin
|
|
refine set_quotient.elim f _ g,
|
|
intro g h K,
|
|
apply eq_of_mul_inv_eq_one,
|
|
have e : f (g * h⁻¹) = f g * (f h)⁻¹,
|
|
from calc
|
|
f (g * h⁻¹) = f g * (f h⁻¹) : to_respect_mul
|
|
... = f g * (f h)⁻¹ : to_respect_inv,
|
|
rewrite (inverse e),
|
|
apply H, exact K
|
|
end
|
|
|
|
definition quotient_group_elim [constructor] (f : G →g G') (H : Π⦃g⦄, g ∈ N → f g = 1) : quotient_group N →g G' :=
|
|
begin
|
|
fapply homomorphism.mk,
|
|
-- define function
|
|
{ exact quotient_group_elim_fun f H },
|
|
{ intro g h, induction g using set_quotient.rec_prop with g,
|
|
induction h using set_quotient.rec_prop with h,
|
|
krewrite (inverse (to_respect_mul (qg_map N) g h)),
|
|
unfold qg_map, esimp, exact to_respect_mul f g h }
|
|
end
|
|
|
|
example {K : property A} [is_subgroup A K] :
|
|
quotient_ab_group K = @quotient_group A K (is_normal_subgroup_ab _) := rfl
|
|
|
|
definition quotient_ab_group_elim [constructor] {K : property A} [is_subgroup A K] (f : A →g B)
|
|
(H : Π⦃g⦄, g ∈ K → f g = 1) : quotient_ab_group K →g B :=
|
|
@quotient_group_elim A B K (is_normal_subgroup_ab _) f H
|
|
|
|
definition quotient_group_compute (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (g : G) :
|
|
quotient_group_elim f H (qg_map N g) = f g :=
|
|
begin
|
|
reflexivity
|
|
end
|
|
|
|
definition gelim_unique (f : G →g G') (H : Π⦃g⦄, g ∈ N → f g = 1) (k : quotient_group N →g G')
|
|
: ( k ∘g qg_map N ~ f ) → k ~ quotient_group_elim f H :=
|
|
begin
|
|
intro K cg, induction cg using set_quotient.rec_prop with g,
|
|
exact K g
|
|
end
|
|
|
|
definition ab_gelim_unique {K : property A} [is_subgroup A K] (f : A →g B) (H : Π (a :A), a ∈ K → f a = 1) (k : quotient_ab_group K →g B)
|
|
: ( k ∘g ab_qg_map K ~ f) → k ~ quotient_ab_group_elim f H :=
|
|
--@quotient_group_elim A B K (is_normal_subgroup_ab _) f H :=
|
|
@gelim_unique _ _ K (is_normal_subgroup_ab _) f H _
|
|
|
|
definition qg_universal_property (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) :
|
|
is_contr (Σ(g : quotient_group N →g G'), g ∘ qg_map N ~ f) :=
|
|
begin
|
|
fapply is_contr.mk,
|
|
-- give center of contraction
|
|
{ fapply sigma.mk, exact quotient_group_elim f H, exact quotient_group_compute f H },
|
|
-- give contraction
|
|
{ intro pair, induction pair with g p, fapply sigma_eq,
|
|
{esimp, apply homomorphism_eq, symmetry, exact gelim_unique f H g p},
|
|
{fapply is_prop.elimo} }
|
|
end
|
|
|
|
definition ab_qg_universal_property {K : property A} [is_subgroup A K] (f : A →g B) (H : Π (a :A), K a → f a = 1) :
|
|
is_contr ((Σ(g : quotient_ab_group K →g B), g ∘g ab_qg_map K ~ f) ) :=
|
|
begin
|
|
fapply @qg_universal_property _ _ K (is_normal_subgroup_ab _),
|
|
exact H
|
|
end
|
|
|
|
definition quotient_group_functor_contr {K L : property A} [is_subgroup A K] [is_subgroup A L]
|
|
(H : Π (a : A), K a → L a) :
|
|
is_contr ((Σ(g : quotient_ab_group K →g quotient_ab_group L), g ∘g ab_qg_map K ~ ab_qg_map L) ) :=
|
|
begin
|
|
fapply ab_qg_universal_property,
|
|
intro a p,
|
|
fapply ab_qg_map_eq_one,
|
|
exact H a p
|
|
end
|
|
|
|
definition quotient_group_functor_id {K : property A} [is_subgroup A K] (H : Π (a : A), K a → K a) :
|
|
center' (@quotient_group_functor_contr _ K K _ _ H) = ⟨gid (quotient_ab_group K), λ x, rfl⟩ :=
|
|
begin
|
|
note p := @quotient_group_functor_contr _ K K _ _ H,
|
|
fapply eq_of_is_contr,
|
|
end
|
|
|
|
section quotient_group_iso_ua
|
|
|
|
set_option pp.universes true
|
|
|
|
definition subgroup_rel_eq' {K L : property A} [HK : is_subgroup A K] [HL : is_subgroup A L] (htpy : Π (a : A), K a ≃ L a) : K = L :=
|
|
begin
|
|
induction HK with Rone Rmul Rinv, induction HL with Rone' Rmul' Rinv', esimp at *,
|
|
assert q : K = L,
|
|
begin
|
|
fapply eq_of_homotopy,
|
|
intro a,
|
|
fapply tua,
|
|
exact htpy a,
|
|
end,
|
|
induction q,
|
|
assert q : Rone = Rone',
|
|
begin
|
|
fapply is_prop.elim,
|
|
end,
|
|
induction q,
|
|
assert q2 : @Rmul = @Rmul',
|
|
begin
|
|
fapply is_prop.elim,
|
|
end,
|
|
induction q2,
|
|
assert q : @Rinv = @Rinv',
|
|
begin
|
|
fapply is_prop.elim,
|
|
end,
|
|
induction q,
|
|
reflexivity
|
|
end
|
|
|
|
definition subgroup_rel_eq {K L : property A} [is_subgroup A K] [is_subgroup A L] (K_in_L : Π (a : A), a ∈ K → a ∈ L) (L_in_K : Π (a : A), a ∈ L → a ∈ K) : K = L :=
|
|
begin
|
|
have htpy : Π (a : A), K a ≃ L a,
|
|
begin
|
|
intro a,
|
|
exact @equiv_of_is_prop (a ∈ K) (a ∈ L) (K_in_L a) (L_in_K a) _ _,
|
|
end,
|
|
exact subgroup_rel_eq' htpy,
|
|
end
|
|
|
|
definition eq_of_ab_qg_group' {K L : property A} [HK : is_subgroup A K] [HL : is_subgroup A L] (p : K = L) : quotient_ab_group K = quotient_ab_group L :=
|
|
begin
|
|
revert HK, revert HL, induction p, intros,
|
|
have HK = HL, begin apply @is_prop.elim _ _ HK HL end,
|
|
rewrite this
|
|
end
|
|
|
|
definition iso_of_eq {B : AbGroup} (p : A = B) : A ≃g B :=
|
|
begin
|
|
induction p, fapply isomorphism.mk, exact gid A, fapply adjointify, exact id, intro a, reflexivity, intro a, reflexivity
|
|
end
|
|
|
|
definition iso_of_ab_qg_group' {K L : property A} [is_subgroup A K] [is_subgroup A L] (p : K = L) : quotient_ab_group K ≃g quotient_ab_group L :=
|
|
iso_of_eq (eq_of_ab_qg_group' p)
|
|
|
|
/-
|
|
definition htpy_of_ab_qg_group' {K L : property A} [HK : is_subgroup A K] [HL : is_subgroup A L] (p : K = L) : (iso_of_ab_qg_group' p) ∘g ab_qg_map K ~ ab_qg_map L :=
|
|
begin
|
|
revert HK, revert HL, induction p, intros HK HL, unfold iso_of_ab_qg_group', unfold ab_qg_map
|
|
-- have HK = HL, begin apply @is_prop.elim _ _ HK HL end,
|
|
-- rewrite this
|
|
-- induction p, reflexivity
|
|
end
|
|
-/
|
|
|
|
definition eq_of_ab_qg_group {K L : property A} [is_subgroup A K] [is_subgroup A L] (K_in_L : Π (a : A), K a → L a) (L_in_K : Π (a : A), L a → K a) : quotient_ab_group K = quotient_ab_group L :=
|
|
eq_of_ab_qg_group' (subgroup_rel_eq K_in_L L_in_K)
|
|
|
|
definition iso_of_ab_qg_group {K L : property A} [is_subgroup A K] [is_subgroup A L] (K_in_L : Π (a : A), K a → L a) (L_in_K : Π (a : A), L a → K a) : quotient_ab_group K ≃g quotient_ab_group L :=
|
|
iso_of_eq (eq_of_ab_qg_group K_in_L L_in_K)
|
|
|
|
/-
|
|
definition htpy_of_ab_qg_group {K L : property A} [is_subgroup A K] [is_subgroup A L] (K_in_L : Π (a : A), K a → L a) (L_in_K : Π (a : A), L a → K a) : iso_of_ab_qg_group K_in_L L_in_K ∘g ab_qg_map K ~ ab_qg_map L :=
|
|
begin
|
|
fapply htpy_of_ab_qg_group'
|
|
end
|
|
-/
|
|
end quotient_group_iso_ua
|
|
|
|
section quotient_group_iso
|
|
variables {K L : property A} [is_subgroup A K] [is_subgroup A L] (H1 : Π (a : A), K a → L a) (H2 : Π (a : A), L a → K a)
|
|
include H1
|
|
include H2
|
|
|
|
definition quotient_group_iso_contr_KL_map :
|
|
quotient_ab_group K →g quotient_ab_group L :=
|
|
pr1 (center' (quotient_group_functor_contr H1))
|
|
|
|
definition quotient_group_iso_contr_KL_triangle :
|
|
quotient_group_iso_contr_KL_map H1 H2 ∘g ab_qg_map K ~ ab_qg_map L :=
|
|
pr2 (center' (quotient_group_functor_contr H1))
|
|
|
|
definition quotient_group_iso_contr_KK :
|
|
is_contr (Σ (g : quotient_ab_group K →g quotient_ab_group K), g ∘g ab_qg_map K ~ ab_qg_map K) :=
|
|
@quotient_group_functor_contr A K K _ _ (λ a, H2 a ∘ H1 a)
|
|
|
|
definition quotient_group_iso_contr_LK :
|
|
quotient_ab_group L →g quotient_ab_group K :=
|
|
pr1 (center' (@quotient_group_functor_contr A L K _ _ H2))
|
|
|
|
definition quotient_group_iso_contr_LL :
|
|
quotient_ab_group L →g quotient_ab_group L :=
|
|
pr1 (center' (@quotient_group_functor_contr A L L _ _ (λ a, H1 a ∘ H2 a)))
|
|
|
|
/-
|
|
definition quotient_group_iso : quotient_ab_group K ≃g quotient_ab_group L :=
|
|
begin
|
|
fapply isomorphism.mk,
|
|
exact pr1 (center' (quotient_group_iso_contr_KL H1 H2)),
|
|
fapply adjointify,
|
|
exact quotient_group_iso_contr_LK H1 H2,
|
|
intro x,
|
|
induction x, reflexivity,
|
|
end
|
|
-/
|
|
|
|
definition quotient_group_iso_contr_aux :
|
|
is_contr (Σ(gh : Σ (g : quotient_ab_group K →g quotient_ab_group L), g ∘g ab_qg_map K ~ ab_qg_map L), is_equiv (group_fun (pr1 gh))) :=
|
|
begin
|
|
fapply is_trunc_sigma,
|
|
exact quotient_group_functor_contr H1,
|
|
intro a, induction a with g h,
|
|
fapply is_contr_of_inhabited_prop,
|
|
fapply adjointify,
|
|
rexact group_fun (pr1 (center' (@quotient_group_functor_contr A L K _ _ H2))),
|
|
note htpy := homotopy_of_eq (ap group_fun (ap sigma.pr1 (@quotient_group_functor_id _ L _ (λ a, (H1 a) ∘ (H2 a))))),
|
|
have KK : is_contr ((Σ(g' : quotient_ab_group K →g quotient_ab_group K), g' ∘g ab_qg_map K ~ ab_qg_map K) ), from
|
|
quotient_group_functor_contr (λ a, (H2 a) ∘ (H1 a)),
|
|
-- have KK_path : ⟨g, h⟩ = ⟨id, λ a, refl (ab_qg_map K a)⟩, from eq_of_is_contr ⟨g, h⟩ ⟨id, λ a, refl (ab_qg_map K a)⟩,
|
|
repeat exact sorry
|
|
end
|
|
/-
|
|
definition quotient_group_iso_contr {K L : property A} [is_subgroup A K] [is_subgroup A L] (H1 : Π (a : A), K a → L a) (H2 : Π (a : A), L a → K a) :
|
|
is_contr (Σ (g : quotient_ab_group K ≃g quotient_ab_group L), g ∘g ab_qg_map K ~ ab_qg_map L) :=
|
|
begin
|
|
refine @is_trunc_equiv_closed (Σ(gh : Σ (g : quotient_ab_group K →g quotient_ab_group L), g ∘g ab_qg_map K ~ ab_qg_map L), is_equiv (group_fun (pr1 gh))) (Σ (g : quotient_ab_group K ≃g quotient_ab_group L), g ∘g ab_qg_map K ~ ab_qg_map L) -2 _ (quotient_group_iso_contr_aux H1 H2),
|
|
exact calc
|
|
(Σ gh, is_equiv (group_fun gh.1)) ≃ Σ (g : quotient_ab_group K →g quotient_ab_group L) (h : g ∘g ab_qg_map K ~ ab_qg_map L), is_equiv (group_fun g) : by exact (sigma_assoc_equiv (λ gh, is_equiv (group_fun gh.1)))⁻¹
|
|
... ≃ (Σ (g : quotient_ab_group K ≃g quotient_ab_group L), g ∘g ab_qg_map K ~ ab_qg_map L) : _
|
|
end
|
|
-/
|
|
|
|
end quotient_group_iso
|
|
|
|
definition quotient_group_functor [constructor] (φ : G →g G') (h : Πg, g ∈ N → φ g ∈ N') :
|
|
quotient_group N →g quotient_group N' :=
|
|
begin
|
|
apply quotient_group_elim (qg_map N' ∘g φ),
|
|
intro g Ng, esimp,
|
|
refine qg_map_eq_one (φ g) (h g Ng)
|
|
end
|
|
|
|
------------------------------------------------
|
|
-- FIRST ISOMORPHISM THEOREM
|
|
------------------------------------------------
|
|
|
|
definition kernel_quotient_extension {A B : AbGroup} (f : A →g B) : quotient_ab_group (kernel f) →g B :=
|
|
begin
|
|
apply quotient_ab_group_elim f,
|
|
intro a, intro p, exact p
|
|
end
|
|
|
|
definition kernel_quotient_extension_triangle {A B : AbGroup} (f : A →g B) :
|
|
kernel_quotient_extension f ∘ ab_qg_map (kernel f) ~ f :=
|
|
begin
|
|
intro a, reflexivity
|
|
end
|
|
|
|
definition is_embedding_kernel_quotient_extension {A B : AbGroup} (f : A →g B) :
|
|
is_embedding (kernel_quotient_extension f) :=
|
|
begin
|
|
fapply is_embedding_of_is_mul_hom,
|
|
intro x,
|
|
note H := is_surjective_ab_qg_map (kernel f) x,
|
|
induction H, induction p,
|
|
intro q,
|
|
apply ab_qg_map_eq_one,
|
|
refine _ ⬝ q,
|
|
symmetry,
|
|
rexact kernel_quotient_extension_triangle f a
|
|
end
|
|
|
|
definition ab_group_quotient_homomorphism (A B : AbGroup)(K : property A)(L : property B) [is_subgroup A K] [is_subgroup B L] (f : A →g B)
|
|
(p : Π(a:A), a ∈ K → f a ∈ L) : quotient_ab_group K →g quotient_ab_group L :=
|
|
begin
|
|
fapply @quotient_group_elim,
|
|
exact (ab_qg_map L) ∘g f,
|
|
intro a,
|
|
intro k,
|
|
exact @ab_qg_map_eq_one B L _ (f a) (p a k),
|
|
end
|
|
|
|
definition ab_group_kernel_factor {A B C: AbGroup} (f : A →g B)(g : A →g C){i : C →g B}(H : f = i ∘g g )
|
|
: kernel g ⊆ kernel f :=
|
|
begin
|
|
intro a,
|
|
intro p,
|
|
exact calc
|
|
f a = i (g a) : homotopy_of_eq (ap group_fun H) a
|
|
... = i 1 : ap i p
|
|
... = 1 : respect_one i
|
|
end
|
|
|
|
definition ab_group_triv_kernel_factor {A B C: AbGroup} (f : A →g B)(g : A →g C){i : C →g B}(H : f = i ∘g g ) :
|
|
kernel f ⊆ '{1} → kernel g ⊆ '{1} :=
|
|
λ p, subproperty.trans (ab_group_kernel_factor f g H) p
|
|
|
|
definition is_embedding_of_kernel_subproperty_one {A B : AbGroup} (f : A →g B) :
|
|
kernel f ⊆ '{1} → is_embedding f :=
|
|
λ p, is_embedding_of_is_mul_hom _
|
|
(take x, assume h : f x = 1,
|
|
show x = 1, from eq_of_mem_singleton (p _ h))
|
|
|
|
definition kernel_subproperty_one {A B : AbGroup} (f : A →g B) :
|
|
is_embedding f → kernel f ⊆ '{1} :=
|
|
λ h x hx,
|
|
have x = 1, from eq_one_of_is_mul_hom hx,
|
|
show x ∈ '{1}, from mem_singleton_of_eq this
|
|
|
|
definition ab_group_kernel_equivalent {A B : AbGroup} (C : AbGroup) (f : A →g B)(g : A →g C)(i : C →g B)(H : f = i ∘g g )(K : is_embedding i)
|
|
: Π a:A, a ∈ kernel g ↔ a ∈ kernel f :=
|
|
exteq_of_subproperty_of_subproperty
|
|
(show kernel g ⊆ kernel f, from ab_group_kernel_factor f g H)
|
|
(show kernel f ⊆ kernel g, from
|
|
take a,
|
|
suppose f a = 1,
|
|
have i (g a) = i 1, from calc
|
|
i (g a) = f a : (homotopy_of_eq (ap group_fun H) a)⁻¹
|
|
... = 1 : this
|
|
... = i 1 : (respect_one i)⁻¹,
|
|
is_injective_of_is_embedding this)
|
|
|
|
definition ab_group_kernel_image_lift (A B : AbGroup) (f : A →g B)
|
|
: Π a : A, a ∈ kernel (image_lift f) ↔ a ∈ kernel f :=
|
|
begin
|
|
fapply ab_group_kernel_equivalent (ab_Image f) (f) (image_lift(f)) (image_incl(f)),
|
|
exact image_factor f,
|
|
exact is_embedding_of_is_injective (image_incl_injective(f)),
|
|
end
|
|
|
|
definition ab_group_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
|
|
: quotient_ab_group (kernel f) →g ab_Image (f) :=
|
|
begin
|
|
fapply quotient_ab_group_elim (image_lift f), intro a, intro p,
|
|
apply iff.mpr (ab_group_kernel_image_lift _ _ f a) p
|
|
end
|
|
|
|
definition ab_group_kernel_quotient_to_image_domain_triangle {A B : AbGroup} (f : A →g B)
|
|
: ab_group_kernel_quotient_to_image (f) ∘g ab_qg_map (kernel f) ~ image_lift(f) :=
|
|
begin
|
|
intros a,
|
|
esimp,
|
|
end
|
|
|
|
definition ab_group_kernel_quotient_to_image_codomain_triangle {A B : AbGroup} (f : A →g B)
|
|
: image_incl f ∘g ab_group_kernel_quotient_to_image f ~ kernel_quotient_extension f :=
|
|
begin
|
|
intro x,
|
|
induction x,
|
|
reflexivity,
|
|
fapply is_prop.elimo
|
|
end
|
|
|
|
-- set_option pp.all true
|
|
-- print algebra._trans_of_Group_of_AbGroup_2
|
|
definition is_surjective_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
|
|
: is_surjective (ab_group_kernel_quotient_to_image f) :=
|
|
begin
|
|
refine is_surjective_factor (ab_qg_map (kernel f)) (image_lift f) _ _,
|
|
apply @quotient_group_compute _ _ _ (@is_normal_subgroup_ab _ (kernel f) _),
|
|
exact is_surjective_image_lift f
|
|
end
|
|
|
|
definition is_embedding_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
|
|
: is_embedding (ab_group_kernel_quotient_to_image f) :=
|
|
begin
|
|
fapply is_embedding_factor (image_incl f) (kernel_quotient_extension f),
|
|
exact ab_group_kernel_quotient_to_image_codomain_triangle f,
|
|
exact is_embedding_kernel_quotient_extension f
|
|
end
|
|
|
|
definition ab_group_first_iso_thm {A B : AbGroup} (f : A →g B)
|
|
: quotient_ab_group (kernel f) ≃g ab_Image f :=
|
|
begin
|
|
fapply isomorphism.mk,
|
|
exact ab_group_kernel_quotient_to_image f,
|
|
fapply is_equiv_of_is_surjective_of_is_embedding,
|
|
exact is_embedding_kernel_quotient_to_image f,
|
|
exact is_surjective_kernel_quotient_to_image f
|
|
end
|
|
|
|
definition codomain_surjection_is_quotient {A B : AbGroup} (f : A →g B)( H : is_surjective f)
|
|
: quotient_ab_group (kernel f) ≃g B :=
|
|
begin
|
|
exact (ab_group_first_iso_thm f) ⬝g (iso_surjection_ab_image_incl f H)
|
|
end
|
|
|
|
definition codomain_surjection_is_quotient_triangle {A B : AbGroup} (f : A →g B)( H : is_surjective f)
|
|
: codomain_surjection_is_quotient (f)(H) ∘g ab_qg_map (kernel f) ~ f :=
|
|
begin
|
|
intro a,
|
|
esimp
|
|
end
|
|
|
|
-- print iff.mpr
|
|
/- set generating normal subgroup -/
|
|
|
|
section
|
|
|
|
parameters {A₁ : AbGroup} (S : A₁ → Prop)
|
|
variable {A₂ : AbGroup}
|
|
|
|
inductive generating_relation' : A₁ → Type :=
|
|
| rincl : Π{g}, S g → generating_relation' g
|
|
| rmul : Π{g h}, generating_relation' g → generating_relation' h → generating_relation' (g * h)
|
|
| rinv : Π{g}, generating_relation' g → generating_relation' g⁻¹
|
|
| rone : generating_relation' 1
|
|
open generating_relation'
|
|
definition generating_relation (g : A₁) : Prop := ∥ generating_relation' g ∥
|
|
local abbreviation R := generating_relation
|
|
definition gr_one : R 1 := tr (rone S)
|
|
definition gr_inv (g : A₁) : R g → R g⁻¹ :=
|
|
trunc_functor -1 rinv
|
|
definition gr_mul (g h : A₁) : R g → R h → R (g * h) :=
|
|
trunc_functor2 rmul
|
|
|
|
definition normal_generating_relation [instance] : is_subgroup A₁ generating_relation :=
|
|
⦃ is_subgroup,
|
|
one_mem := gr_one,
|
|
inv_mem := gr_inv,
|
|
mul_mem := gr_mul⦄
|
|
|
|
parameter (A₁)
|
|
definition quotient_ab_group_gen : AbGroup := quotient_ab_group generating_relation
|
|
|
|
definition gqg_map [constructor] : A₁ →g quotient_ab_group_gen :=
|
|
ab_qg_map _
|
|
|
|
parameter {A₁}
|
|
definition gqg_eq_of_rel {g h : A₁} (H : S (g * h⁻¹)) : gqg_map g = gqg_map h :=
|
|
eq_of_rel (tr (rincl H))
|
|
|
|
-- this one might work if the previous one doesn't (maybe make this the default one?)
|
|
definition gqg_eq_of_rel' {g h : A₁} (H : S (g * h⁻¹)) : class_of g = class_of h :> quotient_ab_group_gen :=
|
|
gqg_eq_of_rel H
|
|
|
|
definition gqg_elim [constructor] (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1)
|
|
: quotient_ab_group_gen →g A₂ :=
|
|
begin
|
|
apply quotient_ab_group_elim f,
|
|
intro g r, induction r with r,
|
|
induction r with g s g h r r' IH1 IH2 g r IH,
|
|
{ exact H s },
|
|
{ exact !respect_mul ⬝ ap011 mul IH1 IH2 ⬝ !one_mul },
|
|
{ exact !respect_inv ⬝ ap inv IH ⬝ !one_inv },
|
|
{ apply respect_one }
|
|
end
|
|
|
|
definition gqg_elim_compute (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1)
|
|
: gqg_elim f H ∘ gqg_map ~ f :=
|
|
begin
|
|
intro g, reflexivity
|
|
end
|
|
|
|
definition gqg_elim_unique (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1)
|
|
(k : quotient_ab_group_gen →g A₂) : ( k ∘g gqg_map ~ f ) → k ~ gqg_elim f H :=
|
|
!ab_gelim_unique
|
|
|
|
end
|
|
|
|
end group
|
|
|
|
namespace group
|
|
|
|
variables {G H K : Group} {R : property G} [is_normal_subgroup G R]
|
|
{S : property H} [is_normal_subgroup H S]
|
|
{T : property K} [is_normal_subgroup K T]
|
|
|
|
theorem quotient_group_functor_compose (ψ : H →g K) (φ : G →g H)
|
|
(hψ : Πg, g ∈ S → ψ g ∈ T) (hφ : Πg, g ∈ R → φ g ∈ S) :
|
|
quotient_group_functor ψ hψ ∘g quotient_group_functor φ hφ ~
|
|
quotient_group_functor (ψ ∘g φ) (λg, proof hψ (φ g) qed ∘ hφ g) :=
|
|
begin
|
|
intro g, induction g using set_quotient.rec_prop with g hg, reflexivity
|
|
end
|
|
|
|
definition quotient_group_functor_gid :
|
|
quotient_group_functor (gid G) (λg, id) ~ gid (quotient_group R) :=
|
|
begin
|
|
intro g, induction g using set_quotient.rec_prop with g hg, reflexivity
|
|
end
|
|
|
|
definition quotient_group_functor_homotopy {ψ φ : G →g H} (hψ : Πg, R g → S (ψ g))
|
|
(hφ : Πg, g ∈ R → φ g ∈ S) (p : φ ~ ψ) :
|
|
quotient_group_functor φ hφ ~ quotient_group_functor ψ hψ :=
|
|
begin
|
|
intro g, induction g using set_quotient.rec_prop with g hg,
|
|
exact ap set_quotient.class_of (p g)
|
|
end
|
|
|
|
definition quotient_group_isomorphism_quotient_group [constructor] (φ : G ≃g H)
|
|
(h : Πg, g ∈ R ↔ φ g ∈ S) : quotient_group R ≃g quotient_group S :=
|
|
begin
|
|
refine isomorphism.MK (quotient_group_functor φ (λg, iff.mp (h g)))
|
|
(quotient_group_functor φ⁻¹ᵍ (λg gS, iff.mpr (h _) (transport S (right_inv φ g)⁻¹ gS))) _ _,
|
|
{ refine quotient_group_functor_compose _ _ _ _ ⬝hty
|
|
quotient_group_functor_homotopy _ _ proof right_inv φ qed ⬝hty
|
|
quotient_group_functor_gid },
|
|
{ refine quotient_group_functor_compose _ _ _ _ ⬝hty
|
|
quotient_group_functor_homotopy _ _ proof left_inv φ qed ⬝hty
|
|
quotient_group_functor_gid }
|
|
end
|
|
|
|
definition is_equiv_qg_map {G : Group} (H : property G) [is_normal_subgroup G H]
|
|
(H₂ : Π⦃g⦄, g ∈ H → g = 1) : is_equiv (qg_map H) :=
|
|
set_quotient.is_equiv_class_of _ (λg h r, eq_of_mul_inv_eq_one (H₂ r))
|
|
|
|
definition quotient_group_isomorphism [constructor] {G : Group} (H : property G)
|
|
[is_normal_subgroup G H] (h : Πg, g ∈ H → g = 1) : quotient_group H ≃g G :=
|
|
(isomorphism.mk _ (is_equiv_qg_map H h))⁻¹ᵍ
|
|
|
|
end group
|
|
|
|
namespace group
|
|
|
|
variables {G H K : AbGroup} {R : property G} [is_subgroup G R]
|
|
{S : property H} [is_subgroup H S]
|
|
{T : property K} [is_subgroup K T]
|
|
|
|
|
|
definition quotient_ab_group_functor [constructor] (φ : G →g H)
|
|
(h : Πg, g ∈ R → φ g ∈ S) : quotient_ab_group R →g quotient_ab_group S :=
|
|
@quotient_group_functor G H R (is_normal_subgroup_ab _) S (is_normal_subgroup_ab _) φ h
|
|
|
|
definition quotient_ab_group_functor_mul
|
|
(ψ φ : G →g H) (hψ : Πg, g ∈ R → ψ g ∈ S) (hφ : Πg, g ∈ R → φ g ∈ S) :
|
|
homomorphism_mul (quotient_ab_group_functor ψ hψ) (quotient_ab_group_functor φ hφ) ~
|
|
quotient_ab_group_functor (homomorphism_mul ψ φ)
|
|
(λg hg, is_subgroup.mul_mem (hψ g hg) (hφ g hg)) :=
|
|
begin
|
|
intro g, induction g using set_quotient.rec_prop with g hg, reflexivity
|
|
end
|
|
|
|
theorem quotient_ab_group_functor_compose (ψ : H →g K) (φ : G →g H)
|
|
(hψ : Πg, g ∈ S → ψ g ∈ T) (hφ : Πg, g ∈ R → φ g ∈ S) :
|
|
quotient_ab_group_functor ψ hψ ∘g quotient_ab_group_functor φ hφ ~
|
|
quotient_ab_group_functor (ψ ∘g φ) (λg, proof hψ (φ g) qed ∘ hφ g) :=
|
|
@quotient_group_functor_compose G H K R _ S _ T _ ψ φ hψ hφ
|
|
|
|
definition quotient_ab_group_functor_gid :
|
|
quotient_ab_group_functor (gid G) (λg, id) ~ gid (quotient_ab_group R) :=
|
|
@quotient_group_functor_gid G R _
|
|
|
|
definition quotient_ab_group_functor_homotopy {ψ φ : G →g H} (hψ : Πg, R g → S (ψ g))
|
|
(hφ : Πg, g ∈ R → φ g ∈ S) (p : φ ~ ψ) :
|
|
quotient_ab_group_functor φ hφ ~ quotient_ab_group_functor ψ hψ :=
|
|
@quotient_group_functor_homotopy G H R _ S _ ψ φ hψ hφ p
|
|
|
|
definition is_equiv_ab_qg_map {G : AbGroup} (H : property G) [is_subgroup G H]
|
|
(h : Π⦃g⦄, g ∈ H → g = 1) : is_equiv (ab_qg_map H) :=
|
|
proof @is_equiv_qg_map G H (is_normal_subgroup_ab _) h qed
|
|
|
|
definition ab_quotient_group_isomorphism [constructor] {G : AbGroup} (H : property G)
|
|
[is_subgroup G H] (h : Πg, H g → g = 1) : quotient_ab_group H ≃g G :=
|
|
(isomorphism.mk _ (is_equiv_ab_qg_map H h))⁻¹ᵍ
|
|
|
|
definition quotient_ab_group_isomorphism_quotient_ab_group [constructor] (φ : G ≃g H)
|
|
(h : Πg, g ∈ R ↔ φ g ∈ S) : quotient_ab_group R ≃g quotient_ab_group S :=
|
|
@quotient_group_isomorphism_quotient_group _ _ _ _ _ _ φ h
|
|
|
|
end group
|