182 lines
9.4 KiB
Text
182 lines
9.4 KiB
Text
/- the construction of the Gysin sequence using the Serre spectral sequence -/
|
||
-- author: Floris van Doorn
|
||
|
||
import .serre
|
||
|
||
open eq pointed is_trunc is_conn is_equiv equiv sphere fiber chain_complex left_module spectrum nat
|
||
prod nat int algebra function spectral_sequence fin group
|
||
|
||
namespace cohomology
|
||
universe variable u
|
||
/-
|
||
Given a pointed map E →* B with as fiber the sphere S^{n+1} and an abelian group A.
|
||
The only nontrivial differentials in the spectral sequence of this map are the following
|
||
differentials on page n:
|
||
d_m = d_(m-1,n+1)^n : E_(m-1,n+1)^n → E_(m+n+1,0)^n
|
||
Note that ker d_m = E_(m-1,n+1)^∞ and coker d_m = E_(m+n+1,0)^∞.
|
||
Each diagonal on the ∞-page has at most two nontrivial groups, which means that
|
||
coker d_{m-1} and ker d_m are the only two nontrivial groups building up D_{m+n}^∞,
|
||
where D^∞ is the abutment of the spectral sequence.
|
||
This gives the short exact sequences:
|
||
coker d_{m-1} → D_{m+n}^∞ → ker d_m
|
||
We can splice these SESs together to get a LES
|
||
... E_(m+n,0)^n → D_{m+n}^∞ → E_(m-1,n+1)^n → E_(m+n+1,0)^n → D_{m+n+1}^∞ ...
|
||
Now we have
|
||
E_(p,q)^n = E_(p,q)^0 = H^p(B; H^q(S^{n+1}; A)) = H^p(B; A) if q = n+1 or q = 0
|
||
and
|
||
D_{n}^∞ = H^n(E; A)
|
||
This gives the Gysin sequence
|
||
... H^{m+n}(B; A) → H^{m+n}(E; A) → H^{m-1}(B; A) → H^{m+n+1}(B; A) → H^{m+n+1}(E; A) ...
|
||
-/
|
||
|
||
|
||
definition gysin_trivial_Epage {E B : pType.{u}} {n : ℕ} (HB : is_conn 1 B) (f : E →* B)
|
||
(e : pfiber f ≃* sphere (n+1)) (A : AbGroup) (r : ℕ) (p q : ℤ) (hq : q ≠ 0)
|
||
(hq' : q ≠ of_nat (n+1)):
|
||
is_contr (convergent_spectral_sequence.E (serre_spectral_sequence_map_of_is_conn pt f
|
||
(EM_spectrum A) 0 (is_strunc_EM_spectrum A) HB) r (p, q)) :=
|
||
begin
|
||
intros, apply is_contr_E, apply is_contr_ordinary_cohomology, esimp,
|
||
refine is_contr_equiv_closed_rev _ (unreduced_ordinary_cohomology_sphere_of_neq A hq' hq),
|
||
apply group.equiv_of_isomorphism, apply unreduced_ordinary_cohomology_isomorphism, exact e⁻¹ᵉ*
|
||
end
|
||
|
||
definition gysin_trivial_Epage2 {E B : pType.{u}} {n : ℕ} (HB : is_conn 1 B) (f : E →* B)
|
||
(e : pfiber f ≃* sphere (n+1)) (A : AbGroup) (r : ℕ) (p q : ℤ) (hq : q > n+1) :
|
||
is_contr (convergent_spectral_sequence.E (serre_spectral_sequence_map_of_is_conn pt f
|
||
(EM_spectrum A) 0 (is_strunc_EM_spectrum A) HB) r (p, q)) :=
|
||
begin
|
||
intros, apply gysin_trivial_Epage HB f e A r p q,
|
||
{ intro h, subst h, apply not_lt_zero (n+1), exact lt_of_of_nat_lt_of_nat hq },
|
||
{ intro h, subst h, exact lt.irrefl _ hq }
|
||
end
|
||
|
||
definition gysin_sequence' {E B : pType.{u}} {n : ℕ} (HB : is_conn 1 B) (f : E →* B)
|
||
(e : pfiber f ≃* sphere (n+1)) (A : AbGroup) : module_chain_complex rℤ -3ℤ :=
|
||
let c := serre_spectral_sequence_map_of_is_conn pt f (EM_spectrum A) 0
|
||
(is_strunc_EM_spectrum A) HB in
|
||
let cn : is_normal c := !is_normal_serre_spectral_sequence_map_of_is_conn in
|
||
have deg_d_x : Π(m : ℤ), deg (convergent_spectral_sequence.d c n) ((m - 1) - 1, n + 1) =
|
||
(n + m - 0, 0),
|
||
begin
|
||
intro m, refine deg_d_normal_eq cn _ _ ⬝ _,
|
||
refine prod_eq _ !add.right_inv,
|
||
refine ap (λx, x + (n+2)) !sub_sub ⬝ _,
|
||
refine add.comm4 m (- 2) n 2 ⬝ _,
|
||
refine ap (λx, x + 0) !add.comm
|
||
end,
|
||
have trivial_E : Π(r : ℕ) (p q : ℤ) (hq : q ≠ 0) (hq' : q ≠ of_nat (n+1)),
|
||
is_contr (convergent_spectral_sequence.E c r (p, q)),
|
||
from gysin_trivial_Epage HB f e A,
|
||
have trivial_E' : Π(r : ℕ) (p q : ℤ) (hq : q > n+1),
|
||
is_contr (convergent_spectral_sequence.E c r (p, q)),
|
||
from gysin_trivial_Epage2 HB f e A,
|
||
left_module.LES_of_SESs _ _ _ (λm, convergent_spectral_sequence.d c n (m - 1, n + 1))
|
||
begin
|
||
intro m,
|
||
fapply short_exact_mod_isomorphism,
|
||
rotate 3,
|
||
{ fapply short_exact_mod_of_is_contr_submodules
|
||
(convergence_0 c (n + m) (λm, neg_zero)),
|
||
{ exact zero_lt_succ n },
|
||
{ intro k Hk0 Hkn, apply trivial_E, exact λh, Hk0 (of_nat.inj h),
|
||
exact λh, Hkn (of_nat.inj h), }},
|
||
{ symmetry, refine Einf_isomorphism c (n+1) _ _ ⬝lm
|
||
convergent_spectral_sequence.α c n (n + m - 0, 0) ⬝lm
|
||
isomorphism_of_eq (ap (graded_homology _ _) _) ⬝lm
|
||
!graded_homology_isomorphism ⬝lm
|
||
homology_isomorphism_cokernel_module _ _ _,
|
||
{ intros r Hr, apply trivial_E', apply of_nat_lt_of_nat_of_lt,
|
||
rewrite [zero_add], exact lt_succ_of_le Hr },
|
||
{ intros r Hr, apply is_contr_E, apply is_normal.normal2 cn,
|
||
refine lt_of_le_of_lt (le_of_eq (ap (λx : ℤ × ℤ, 0 + pr2 x) (is_normal.normal3 cn r))) _,
|
||
esimp, rewrite [-sub_eq_add_neg], apply sub_lt_of_pos, apply of_nat_lt_of_nat_of_lt,
|
||
apply succ_pos },
|
||
{ exact (deg_d_x m)⁻¹ },
|
||
{ intro x, apply @eq_of_is_contr, apply is_contr_E,
|
||
apply is_normal.normal2 cn,
|
||
refine lt_of_le_of_lt (@le_of_eq ℤ _ _ _ (ap (pr2 ∘ deg (convergent_spectral_sequence.d c n))
|
||
(deg_d_x m) ⬝ ap pr2 (deg_d_normal_eq cn _ _))) _,
|
||
refine lt_of_le_of_lt (le_of_eq (zero_add (-(n+1)))) _,
|
||
apply neg_neg_of_pos, apply of_nat_succ_pos }},
|
||
{ reflexivity },
|
||
{ symmetry,
|
||
refine Einf_isomorphism c (n+1) _ _ ⬝lm
|
||
convergent_spectral_sequence.α c n (n + m - (n+1), n+1) ⬝lm
|
||
graded_homology_isomorphism_kernel_module _ _ _ _ ⬝lm
|
||
isomorphism_of_eq (ap (graded_kernel _) _),
|
||
{ intros r Hr, apply trivial_E', apply of_nat_lt_of_nat_of_lt,
|
||
apply lt_add_of_pos_right, apply zero_lt_succ },
|
||
{ intros r Hr, apply is_contr_E, apply is_normal.normal2 cn,
|
||
refine lt_of_le_of_lt (le_of_eq (ap (λx : ℤ × ℤ, (n+1)+pr2 x) (is_normal.normal3 cn r))) _,
|
||
esimp, rewrite [-sub_eq_add_neg], apply sub_lt_right_of_lt_add,
|
||
apply of_nat_lt_of_nat_of_lt, rewrite [zero_add], exact lt_succ_of_le Hr },
|
||
{ apply trivial_image_of_is_contr, rewrite [deg_d_inv_eq],
|
||
apply trivial_E', apply of_nat_lt_of_nat_of_lt,
|
||
apply lt_add_of_pos_right, apply zero_lt_succ },
|
||
{ refine prod_eq _ rfl, refine ap (add _) !neg_add ⬝ _,
|
||
refine add.comm4 n m (-n) (- 1) ⬝ _,
|
||
refine ap (λx, x + _) !add.right_inv ⬝ !zero_add }}
|
||
end
|
||
|
||
definition gysin_sequence'_zero {E B : Type*} {n : ℕ} (HB : is_conn 1 B) (f : E →* B)
|
||
(e : pfiber f ≃* sphere (n+1)) (A : AbGroup) (m : ℤ) :
|
||
gysin_sequence' HB f e A (m, 0) ≃lm LeftModule_int_of_AbGroup (uoH^m+n+1[B, A]) :=
|
||
let c := serre_spectral_sequence_map_of_is_conn pt f (EM_spectrum A) 0
|
||
(is_strunc_EM_spectrum A) HB in
|
||
let cn : is_normal c := !is_normal_serre_spectral_sequence_map_of_is_conn in
|
||
begin
|
||
refine LES_of_SESs_zero _ _ m ⬝lm _,
|
||
transitivity convergent_spectral_sequence.E c n (m+n+1, 0),
|
||
exact isomorphism_of_eq (ap (convergent_spectral_sequence.E c n)
|
||
(deg_d_normal_eq cn _ _ ⬝ prod_eq (add.comm4 m (- 1) n 2) (add.right_inv (n+1)))),
|
||
refine E_isomorphism0 _ _ _ ⬝lm
|
||
lm_iso_int.mk (unreduced_ordinary_cohomology_isomorphism_right _ _ _),
|
||
{ intros r hr, apply is_contr_ordinary_cohomology,
|
||
refine is_contr_equiv_closed_rev
|
||
(equiv_of_isomorphism (cohomology_change_int _ _ _ ⬝g uoH^≃r+1[e⁻¹ᵉ*, A]))
|
||
(unreduced_ordinary_cohomology_sphere_of_neq_nat A _ _),
|
||
{ exact !zero_sub ⬝ ap neg (deg_d_normal_pr2 cn r) ⬝ !neg_neg },
|
||
{ apply ne_of_lt, apply add_lt_add_right, exact hr },
|
||
{ apply succ_ne_zero }},
|
||
{ intros r hr, apply is_contr_ordinary_cohomology,
|
||
refine is_contr_equiv_closed_rev
|
||
(equiv_of_isomorphism (cohomology_change_int _ _ (!zero_add ⬝ deg_d_normal_pr2 cn r)))
|
||
(is_contr_ordinary_cohomology_of_neg _ _ _),
|
||
{ rewrite [-neg_zero], apply neg_lt_neg, apply of_nat_lt_of_nat_of_lt, apply zero_lt_succ }},
|
||
{ exact uoH^≃ 0[e⁻¹ᵉ*, A] ⬝g unreduced_ordinary_cohomology_sphere_zero _ _ (succ_ne_zero n) }
|
||
end
|
||
|
||
definition gysin_sequence'_one {E B : Type*} {n : ℕ} (HB : is_conn 1 B) (f : E →* B)
|
||
(e : pfiber f ≃* sphere (n+1)) (A : AbGroup) (m : ℤ) :
|
||
gysin_sequence' HB f e A (m, 1) ≃lm LeftModule_int_of_AbGroup (uoH^m - 1[B, A]) :=
|
||
let c := serre_spectral_sequence_map_of_is_conn pt f (EM_spectrum A) 0
|
||
(is_strunc_EM_spectrum A) HB in
|
||
let cn : is_normal c := !is_normal_serre_spectral_sequence_map_of_is_conn in
|
||
begin
|
||
refine LES_of_SESs_one _ _ m ⬝lm _,
|
||
refine E_isomorphism0 _ _ _ ⬝lm
|
||
lm_iso_int.mk (unreduced_ordinary_cohomology_isomorphism_right _ _ _),
|
||
{ intros r hr, apply is_contr_ordinary_cohomology,
|
||
refine is_contr_equiv_closed_rev
|
||
(equiv_of_isomorphism uoH^≃_[e⁻¹ᵉ*, A])
|
||
(unreduced_ordinary_cohomology_sphere_of_gt _ _),
|
||
{ apply lt_add_of_pos_right, apply zero_lt_succ }},
|
||
{ intros r hr, apply is_contr_ordinary_cohomology,
|
||
refine is_contr_equiv_closed_rev
|
||
(equiv_of_isomorphism (cohomology_change_int _ _ _ ⬝g uoH^≃n-r[e⁻¹ᵉ*, A]))
|
||
(unreduced_ordinary_cohomology_sphere_of_neq_nat A _ _),
|
||
{ refine ap (add _) (deg_d_normal_pr2 cn r) ⬝ add_sub_comm n 1 r 1 ⬝ !add_zero ⬝ _,
|
||
symmetry, apply of_nat_sub, exact le_of_lt hr },
|
||
{ apply ne_of_lt, exact lt_of_le_of_lt (nat.sub_le n r) (lt.base n) },
|
||
{ apply ne_of_gt, exact nat.sub_pos_of_lt hr }},
|
||
{ refine uoH^≃n+1[e⁻¹ᵉ*, A] ⬝g unreduced_ordinary_cohomology_sphere _ _ (succ_ne_zero n) }
|
||
end
|
||
|
||
-- todo: maybe rewrite n+m to m+n (or above rewrite m+n+1 to n+m+1 or n+(m+1))?
|
||
definition gysin_sequence'_two {E B : Type*} {n : ℕ} (HB : is_conn 1 B) (f : E →* B)
|
||
(e : pfiber f ≃* sphere (n+1)) (A : AbGroup) (m : ℤ) :
|
||
gysin_sequence' HB f e A (m, 2) ≃lm LeftModule_int_of_AbGroup (uoH^n+m[E, A]) :=
|
||
LES_of_SESs_two _ _ m
|
||
|
||
end cohomology
|