Spectral/coind_colim.hlean
2017-11-22 16:30:58 -05:00

141 lines
6.2 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- author: Floris van Doorn
import .colimit.seq_colim
open nat seq_colim eq equiv is_equiv is_trunc function
namespace seq_colim
variables {A : → Type} {f : seq_diagram A}
definition ι0 [reducible] : A 0 → seq_colim f :=
ι f
variable (f)
definition ι0' [reducible] : A 0 → seq_colim f :=
ι f
definition glue0 (a : A 0) : shift_down f (ι0 (f a)) = ι f a :=
glue f a
definition rec_coind_point {P : Π⦃A : → Type⦄ (f : seq_diagram A), seq_colim f → Type}
(P0 : Π⦃A⦄ (f : seq_diagram A) (a : A 0), P f (ι0 a))
(Ps : Π⦃A⦄ (f : seq_diagram A) (x : seq_colim (shift_diag f)),
P (shift_diag f) x → P f (shift_down f x))
(Pe : Π⦃A⦄ (f : seq_diagram A) (a : A 0),
pathover (P f) (Ps f (ι0 (f a)) !P0) (proof glue f a qed) (P0 f a))
(n : ) : Π{A : → Type} {f : seq_diagram A} (a : A n), P f (ι f a) :=
begin
induction n with n IH: intro A f a,
{ exact P0 f a },
{ exact Ps f (ι _ a) (IH a) }
end
definition rec_coind_point_succ {P : Π⦃A : → Type⦄ (f : seq_diagram A), seq_colim f → Type}
(P0 : Π⦃A⦄ (f : seq_diagram A) (a : A 0), P f (ι0 a))
(Ps : Π⦃A⦄ (f : seq_diagram A) (x : seq_colim (shift_diag f)),
P (shift_diag f) x → P f (shift_down f x))
(Pe : Π⦃A⦄ (f : seq_diagram A) (a : A 0),
pathover (P f) (Ps f (ι0 (f a)) !P0) _ (P0 f a))
(n : ) {A : → Type} {f : seq_diagram A} (a : A (succ n)) :
rec_coind_point P0 Ps Pe (succ n) a = Ps f (ι _ a) (rec_coind_point P0 Ps Pe n a) :=
by reflexivity
definition rec_coind {P : Π⦃A : → Type⦄ (f : seq_diagram A), seq_colim f → Type}
(P0 : Π⦃A⦄ (f : seq_diagram A) (a : A 0), P f (ι0 a))
(Ps : Π⦃A⦄ (f : seq_diagram A) (x : seq_colim (shift_diag f)),
P (shift_diag f) x → P f (shift_down f x))
(Pe : Π⦃A⦄ (f : seq_diagram A) (a : A 0),
pathover (P f) (Ps f (ι0 (f a)) !P0) (proof glue f a qed) (P0 f a))
{A : → Type} {f : seq_diagram A} (x : seq_colim f) : P f x :=
begin
induction x,
{ exact rec_coind_point P0 Ps Pe n a },
{ revert A f a, induction n with n IH: intro A f a,
{ exact Pe f a },
{ rewrite [rec_coind_point_succ _ _ _ n, rec_coind_point_succ],
note p := IH _ (shift_diag f) a,
refine change_path _ (pathover_ap _ _ (apo (Ps f) p)),
exact !elim_glue
}},
end
definition rec_coind_pt2 {P : Π⦃A : → Type⦄ (f : seq_diagram A), seq_colim f → Type}
(P0 : Π⦃A⦄ (f : seq_diagram A) (a : A 0), P f (ι0 a))
(Ps : Π⦃A⦄ (f : seq_diagram A) (x : seq_colim (shift_diag f)),
P (shift_diag f) x → P f (shift_down f x))
(Pe : Π⦃A⦄ (f : seq_diagram A) (a : A 0),
pathover (P f) (Ps f (ι0 (f a)) !P0) _ (P0 f a))
{A : → Type} {f : seq_diagram A} (x : seq_colim (shift_diag f))
: rec_coind P0 Ps Pe (shift_down f x) = Ps f x (rec_coind P0 Ps Pe x) :=
begin
induction x,
{ reflexivity },
{ apply eq_pathover_dep,
apply hdeg_squareover, esimp,
refine apd_compose2 (rec_coind P0 Ps Pe) _ _ ⬝ _ ⬝ (apd_compose1 (Ps f) _ _)⁻¹,
exact sorry
--refine ap (λx, pathover_of_pathover_ap _ _ (x)) _ ⬝ _ ,
}
end
definition elim_coind_point {P : Π⦃A : → Type⦄ (f : seq_diagram A), Type}
(P0 : Π⦃A⦄ (f : seq_diagram A) (a : A 0), P f)
(Ps : Π⦃A⦄ (f : seq_diagram A) (x : seq_colim (shift_diag f)), P (shift_diag f) → P f)
(Pe : Π⦃A⦄ (f : seq_diagram A) (a : A 0), Ps f (ι0 (f a)) (P0 _ (f a)) = P0 f a)
(n : ) : Π{A : → Type} (f : seq_diagram A) (a : A n), P f :=
begin
induction n with n IH: intro A f a,
{ exact P0 f a },
{ exact Ps f (ι _ a) (IH _ a) }
end
definition elim_coind_point_succ {P : Π⦃A : → Type⦄ (f : seq_diagram A), Type}
(P0 : Π⦃A⦄ (f : seq_diagram A) (a : A 0), P f)
(Ps : Π⦃A⦄ (f : seq_diagram A) (x : seq_colim (shift_diag f)), P (shift_diag f) → P f)
(Pe : Π⦃A⦄ (f : seq_diagram A) (a : A 0), Ps f (ι0 (f a)) (P0 _ (f a)) = P0 f a)
(n : ) {A : → Type} {f : seq_diagram A} (a : A (succ n)) :
elim_coind_point P0 Ps Pe (succ n) f a =
Ps f (ι _ a) (elim_coind_point P0 Ps Pe n (shift_diag f) a) :=
by reflexivity
definition elim_coind_path {P : Π⦃A : → Type⦄ (f : seq_diagram A), Type}
(P0 : Π⦃A⦄ (f : seq_diagram A) (a : A 0), P f)
(Ps : Π⦃A⦄ (f : seq_diagram A) (x : seq_colim (shift_diag f)), P (shift_diag f) → P f)
(Pe : Π⦃A⦄ (f : seq_diagram A) (a : A 0), Ps f (ι0 (f a)) (P0 _ (f a)) = P0 f a)
(n : ) : Π{A : → Type} (f : seq_diagram A) (a : A n),
elim_coind_point P0 Ps Pe (succ n) f (f a) = elim_coind_point P0 Ps Pe n f a :=
begin
induction n with n IH: intro A f a,
{ exact Pe f a },
{ rewrite [elim_coind_point_succ _ _ _ n, elim_coind_point_succ],
note p := IH (shift_diag f) a,
refine ap011 (Ps f) !glue p }
end
definition elim_coind {P : Π⦃A : → Type⦄ (f : seq_diagram A), Type}
(P0 : Π⦃A⦄ (f : seq_diagram A) (a : A 0), P f)
(Ps : Π⦃A⦄ (f : seq_diagram A) (x : seq_colim (shift_diag f)), P (shift_diag f) → P f)
(Pe : Π⦃A⦄ (f : seq_diagram A) (a : A 0), Ps f (ι0 (f a)) (P0 _ (f a)) = P0 f a)
{A : → Type} {f : seq_diagram A} (x : seq_colim f) : P f :=
begin
induction x,
{ exact elim_coind_point P0 Ps Pe n f a },
{ exact elim_coind_path P0 Ps Pe n f a },
end
definition elim_coind_pt2 {P : Π⦃A : → Type⦄ (f : seq_diagram A), Type}
(P0 : Π⦃A⦄ (f : seq_diagram A) (a : A 0), P f)
(Ps : Π⦃A⦄ (f : seq_diagram A) (x : seq_colim (shift_diag f)), P (shift_diag f) → P f)
(Pe : Π⦃A⦄ (f : seq_diagram A) (a : A 0), Ps f (ι0 (f a)) (P0 _ (f a)) = P0 f a)
{A : → Type} {f : seq_diagram A} (x : seq_colim (shift_diag f))
: elim_coind P0 Ps Pe (shift_down f x) = Ps f x (elim_coind P0 Ps Pe x) :=
begin
induction x,
{ reflexivity },
{ apply eq_pathover, apply hdeg_square,
refine ap_compose (elim_coind P0 Ps Pe) _ _ ⬝ _ ⬝ (ap_eq_ap011 (Ps f) _ _ _)⁻¹,
refine ap02 _ !elim_glue ⬝ !elim_glue ⬝ ap011 (ap011 _) !ap_id⁻¹ !elim_glue⁻¹ }
end
end seq_colim