219 lines
11 KiB
Text
219 lines
11 KiB
Text
/-
|
||
Copyright (c) 2017 Yuri Sulyma, Favonia
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Yuri Sulyma, Favonia
|
||
|
||
Reduced homology theories
|
||
-/
|
||
|
||
import ..homotopy.spectrum ..homotopy.EM ..algebra.arrow_group ..algebra.direct_sum ..homotopy.fwedge ..homotopy.wedge ..choice ..homotopy.pushout ..move_to_lib
|
||
|
||
open eq spectrum int pointed group algebra sphere nat equiv susp is_trunc
|
||
function fwedge cofiber lift is_equiv choice algebra pi smash wedge
|
||
|
||
namespace homology
|
||
|
||
/- homology theory -/
|
||
structure homology_theory.{u} : Type.{u+1} :=
|
||
(HH : ℤ → pType.{u} → AbGroup.{u})
|
||
(Hh : Π(n : ℤ) {X Y : Type*} (f : X →* Y), HH n X →g HH n Y)
|
||
(Hpid : Π(n : ℤ) {X : Type*} (x : HH n X), Hh n (pid X) x = x)
|
||
(Hpcompose : Π(n : ℤ) {X Y Z : Type*} (f : Y →* Z) (g : X →* Y),
|
||
Hh n (f ∘* g) ~ Hh n f ∘ Hh n g)
|
||
(Hpsusp : Π(n : ℤ) (X : Type*), HH (succ n) (psusp X) ≃g HH n X)
|
||
(Hpsusp_natural : Π(n : ℤ) {X Y : Type*} (f : X →* Y),
|
||
Hpsusp n Y ∘ Hh (succ n) (psusp_functor f) ~ Hh n f ∘ Hpsusp n X)
|
||
(Hexact : Π(n : ℤ) {X Y : Type*} (f : X →* Y), is_exact_g (Hh n f) (Hh n (pcod f)))
|
||
(Hadditive : Π(n : ℤ) {I : Set.{u}} (X : I → Type*), is_equiv
|
||
(dirsum_elim (λi, Hh n (pinl i)) : dirsum (λi, HH n (X i)) → HH n (⋁ X)))
|
||
|
||
structure ordinary_homology_theory.{u} extends homology_theory.{u} : Type.{u+1} :=
|
||
(Hdimension : Π(n : ℤ), n ≠ 0 → is_contr (HH n (plift (psphere 0))))
|
||
|
||
section
|
||
universe variable u
|
||
parameter (theory : homology_theory.{u})
|
||
open homology_theory
|
||
|
||
theorem HH_base_indep (n : ℤ) {A : Type} (a b : A)
|
||
: HH theory n (pType.mk A a) ≃g HH theory n (pType.mk A b) :=
|
||
calc HH theory n (pType.mk A a) ≃g HH theory (int.succ n) (psusp A) : by exact (Hpsusp theory n (pType.mk A a)) ⁻¹ᵍ
|
||
... ≃g HH theory n (pType.mk A b) : by exact Hpsusp theory n (pType.mk A b)
|
||
|
||
theorem Hh_homotopy' (n : ℤ) {A B : Type*} (f : A → B) (p q : f pt = pt)
|
||
: Hh theory n (pmap.mk f p) ~ Hh theory n (pmap.mk f q) := λ x,
|
||
calc Hh theory n (pmap.mk f p) x
|
||
= Hh theory n (pmap.mk f p) (Hpsusp theory n A ((Hpsusp theory n A)⁻¹ᵍ x))
|
||
: by exact ap (Hh theory n (pmap.mk f p)) (equiv.to_right_inv (equiv_of_isomorphism (Hpsusp theory n A)) x)⁻¹
|
||
... = Hpsusp theory n B (Hh theory (succ n) (pmap.mk (susp.functor f) !refl) ((Hpsusp theory n A)⁻¹ x))
|
||
: by exact (Hpsusp_natural theory n (pmap.mk f p) ((Hpsusp theory n A)⁻¹ᵍ x))⁻¹
|
||
... = Hh theory n (pmap.mk f q) (Hpsusp theory n A ((Hpsusp theory n A)⁻¹ x))
|
||
: by exact Hpsusp_natural theory n (pmap.mk f q) ((Hpsusp theory n A)⁻¹ x)
|
||
... = Hh theory n (pmap.mk f q) x
|
||
: by exact ap (Hh theory n (pmap.mk f q)) (equiv.to_right_inv (equiv_of_isomorphism (Hpsusp theory n A)) x)
|
||
|
||
theorem Hh_homotopy (n : ℤ) {A B : Type*} (f g : A →* B) (h : f ~ g) : Hh theory n f ~ Hh theory n g := λ x,
|
||
calc Hh theory n f x
|
||
= Hh theory n (pmap.mk f (respect_pt f)) x : by exact ap (λ f, Hh theory n f x) (pmap.eta f)⁻¹
|
||
... = Hh theory n (pmap.mk f (h pt ⬝ respect_pt g)) x : by exact Hh_homotopy' n f (respect_pt f) (h pt ⬝ respect_pt g) x
|
||
... = Hh theory n g x : by exact ap (λ f, Hh theory n f x) (@pmap_eq _ _ (pmap.mk f (h pt ⬝ respect_pt g)) _ h (refl (h pt ⬝ respect_pt g)))
|
||
|
||
definition HH_isomorphism (n : ℤ) {A B : Type*} (e : A ≃* B)
|
||
: HH theory n A ≃g HH theory n B :=
|
||
begin
|
||
fapply isomorphism.mk,
|
||
{ exact Hh theory n e },
|
||
fapply adjointify,
|
||
{ exact Hh theory n e⁻¹ᵉ* },
|
||
{ intro x, exact calc
|
||
Hh theory n e (Hh theory n e⁻¹ᵉ* x)
|
||
= Hh theory n (e ∘* e⁻¹ᵉ*) x : by exact (Hpcompose theory n e e⁻¹ᵉ* x)⁻¹
|
||
... = Hh theory n !pid x : by exact Hh_homotopy n (e ∘* e⁻¹ᵉ*) !pid (to_right_inv e) x
|
||
... = x : by exact Hpid theory n x
|
||
},
|
||
{ intro x, exact calc
|
||
Hh theory n e⁻¹ᵉ* (Hh theory n e x)
|
||
= Hh theory n (e⁻¹ᵉ* ∘* e) x : by exact (Hpcompose theory n e⁻¹ᵉ* e x)⁻¹
|
||
... = Hh theory n !pid x : by exact Hh_homotopy n (e⁻¹ᵉ* ∘* e) !pid (to_left_inv e) x
|
||
... = x : by exact Hpid theory n x
|
||
}
|
||
end
|
||
|
||
definition Hadditive_equiv (n : ℤ) {I : Type} [is_set I] (X : I → Type*)
|
||
: dirsum (λi, HH theory n (X i)) ≃g HH theory n (⋁ X) :=
|
||
isomorphism.mk (dirsum_elim (λi, Hh theory n (fwedge.pinl i))) (Hadditive theory n X)
|
||
|
||
definition Hadditive' (n : ℤ) {I : Type₀} [is_set I] (X : I → pType.{u}) : is_equiv
|
||
(dirsum_elim (λi, Hh theory n (pinl i)) : dirsum (λi, HH theory n (X i)) → HH theory n (⋁ X)) :=
|
||
let iso3 := HH_isomorphism n (fwedge_down_left.{0 u} X) in
|
||
let iso2 := Hadditive_equiv n (X ∘ down.{0 u}) in
|
||
let iso1 := (dirsum_down_left.{0 u} (λ i, HH theory n (X i)))⁻¹ᵍ in
|
||
let iso := calc dirsum (λ i, HH theory n (X i))
|
||
≃g dirsum (λ i, HH theory n (X (down.{0 u} i))) : by exact iso1
|
||
... ≃g HH theory n (⋁ (X ∘ down.{0 u})) : by exact iso2
|
||
... ≃g HH theory n (⋁ X) : by exact iso3
|
||
in
|
||
begin
|
||
fapply is_equiv_of_equiv_of_homotopy,
|
||
{ exact equiv_of_isomorphism iso },
|
||
{ refine dirsum_homotopy _, intro i y,
|
||
refine homomorphism_comp_compute iso3 (iso2 ∘g iso1) _ ⬝ _,
|
||
refine ap iso3 (homomorphism_comp_compute iso2 iso1 _) ⬝ _,
|
||
refine ap (iso3 ∘ iso2) _ ⬝ _,
|
||
{ exact dirsum_incl (λ i, HH theory n (X (down i))) (up i) y },
|
||
{ refine _ ⬝ dirsum_elim_compute (λi, dirsum_incl (λ i, HH theory n (X (down.{0 u} i))) (up i)) i y,
|
||
reflexivity
|
||
},
|
||
refine ap iso3 _ ⬝ _,
|
||
{ exact Hh theory n (fwedge.pinl (up i)) y },
|
||
{ refine _ ⬝ dirsum_elim_compute (λi, Hh theory n (fwedge.pinl i)) (up i) y,
|
||
reflexivity
|
||
},
|
||
refine (Hpcompose theory n (fwedge_down_left X) (fwedge.pinl (up i)) y)⁻¹ ⬝ _,
|
||
refine Hh_homotopy n (fwedge_down_left.{0 u} X ∘* fwedge.pinl (up i)) (fwedge.pinl i) (fwedge_pmap_beta (λ i, pinl (down i)) (up i)) y ⬝ _,
|
||
refine (dirsum_elim_compute (λ i, Hh theory n (pinl i)) i y)⁻¹
|
||
}
|
||
end
|
||
|
||
definition Hadditive'_equiv (n : ℤ) {I : Type₀} [is_set I] (X : I → Type*)
|
||
: dirsum (λi, HH theory n (X i)) ≃g HH theory n (⋁ X) :=
|
||
isomorphism.mk (dirsum_elim (λi, Hh theory n (fwedge.pinl i))) (Hadditive' n X)
|
||
|
||
definition Hfwedge (n : ℤ) {I : Type} [is_set I] (X : I → Type*): HH theory n (⋁ X) ≃g dirsum (λi, HH theory n (X i)) :=
|
||
(isomorphism.mk _ (Hadditive theory n X))⁻¹ᵍ
|
||
|
||
definition Hpwedge (n : ℤ) (A B : Type*) : HH theory n (pwedge A B) ≃g HH theory n A ×g HH theory n B :=
|
||
calc HH theory n (A ∨ B) ≃g HH theory n (⋁ (bool.rec A B)) : by exact HH_isomorphism n (pwedge_pequiv_fwedge A B)
|
||
... ≃g dirsum (λb, HH theory n (bool.rec A B b)) : by exact (Hadditive'_equiv n (bool.rec A B))⁻¹ᵍ
|
||
... ≃g dirsum (bool.rec (HH theory n A) (HH theory n B)) : by exact dirsum_isomorphism (bool.rec !isomorphism.refl !isomorphism.refl)
|
||
... ≃g HH theory n A ×g HH theory n B : by exact binary_dirsum (HH theory n A) (HH theory n B)
|
||
|
||
end
|
||
section
|
||
universe variables u v
|
||
parameter (theory : homology_theory.{max u v})
|
||
open homology_theory
|
||
|
||
definition Hplift_psusp (n : ℤ) (A : Type*): HH theory (n + 1) (plift.{u v} (psusp A)) ≃g HH theory n (plift.{u v} A) :=
|
||
calc HH theory (n + 1) (plift.{u v} (psusp A)) ≃g HH theory (n + 1) (psusp (plift.{u v} A)) : by exact HH_isomorphism theory (n + 1) (plift_psusp _)
|
||
... ≃g HH theory n (plift.{u v} A) : by exact Hpsusp theory n (plift.{u v} A)
|
||
|
||
definition Hplift_pwedge (n : ℤ) (A B : Type*): HH theory n (plift.{u v} (A ∨ B)) ≃g HH theory n (plift.{u v} A) ×g HH theory n (plift.{u v} B) :=
|
||
calc HH theory n (plift.{u v} (A ∨ B)) ≃g HH theory n (plift.{u v} A ∨ plift.{u v} B) : by exact HH_isomorphism theory n (plift_pwedge A B)
|
||
... ≃g HH theory n (plift.{u v} A) ×g HH theory n (plift.{u v} B) : by exact Hpwedge theory n (plift.{u v} A) (plift.{u v} B)
|
||
|
||
definition Hplift_isomorphism (n : ℤ) {A B : Type*} (e : A ≃* B) : HH theory n (plift.{u v} A) ≃g HH theory n (plift.{u v} B) :=
|
||
HH_isomorphism theory n (!pequiv_plift⁻¹ᵉ* ⬝e* e ⬝e* !pequiv_plift)
|
||
|
||
end
|
||
|
||
/- homology theory associated to a prespectrum -/
|
||
definition homology (X : Type*) (E : prespectrum) (n : ℤ) : AbGroup :=
|
||
pshomotopy_group n (smash_prespectrum X E)
|
||
|
||
/- an alternative definition, which might be a bit harder to work with -/
|
||
definition homology_spectrum (X : Type*) (E : spectrum) (n : ℤ) : AbGroup :=
|
||
shomotopy_group n (smash_spectrum X E)
|
||
|
||
definition parametrized_homology {X : Type*} (E : X → spectrum) (n : ℤ) : AbGroup :=
|
||
sorry
|
||
|
||
definition ordinary_homology [reducible] (X : Type*) (G : AbGroup) (n : ℤ) : AbGroup :=
|
||
homology X (EM_spectrum G) n
|
||
|
||
definition ordinary_homology_Z [reducible] (X : Type*) (n : ℤ) : AbGroup :=
|
||
ordinary_homology X agℤ n
|
||
|
||
notation `H_` n `[`:0 X:0 `, ` E:0 `]`:0 := homology X E n
|
||
notation `H_` n `[`:0 X:0 `]`:0 := ordinary_homology_Z X n
|
||
notation `pH_` n `[`:0 binders `, ` r:(scoped E, parametrized_homology E n) `]`:0 := r
|
||
|
||
definition unpointed_homology (X : Type) (E : spectrum) (n : ℤ) : AbGroup :=
|
||
H_ n[X₊, E]
|
||
|
||
definition homology_functor [constructor] {X Y : Type*} {E F : prespectrum} (f : X →* Y)
|
||
(g : E →ₛ F) (n : ℤ) : homology X E n →g homology Y F n :=
|
||
pshomotopy_group_fun n (smash_prespectrum_fun f g)
|
||
|
||
definition homology_theory_spectrum_is_exact.{u} (E : spectrum.{u}) (n : ℤ) {X Y : Type*} (f : X →* Y) :
|
||
is_exact_g (homology_functor f (sid (gen_spectrum.to_prespectrum E)) n)
|
||
(homology_functor (pcod f) (sid (gen_spectrum.to_prespectrum E)) n) :=
|
||
begin
|
||
esimp[is_exact_g],
|
||
-- fconstructor,
|
||
-- { intro a, exact sorry },
|
||
-- { intro a, exact sorry }
|
||
exact sorry
|
||
end
|
||
|
||
definition homology_theory_spectrum.{u} [constructor] (E : spectrum.{u}) : homology_theory.{u} :=
|
||
begin
|
||
fapply homology_theory.mk,
|
||
exact (λn X, H_ n[X, E]),
|
||
exact (λn X Y f, homology_functor f (sid E) n),
|
||
exact sorry, -- Hid is uninteresting but potentially very hard to prove
|
||
exact sorry,
|
||
exact sorry,
|
||
exact sorry,
|
||
apply homology_theory_spectrum_is_exact,
|
||
exact sorry
|
||
-- sorry
|
||
-- sorry
|
||
-- sorry
|
||
-- sorry
|
||
-- sorry
|
||
-- sorry
|
||
-- (λn A, H^n[A, Y])
|
||
-- (λn A B f, cohomology_isomorphism f Y n)
|
||
-- (λn A, cohomology_isomorphism_refl A Y n)
|
||
-- (λn A B f, cohomology_functor f Y n)
|
||
-- (λn A B f g p, cohomology_functor_phomotopy p Y n)
|
||
-- (λn A B f x, cohomology_functor_phomotopy_refl f Y n x)
|
||
-- (λn A x, cohomology_functor_pid A Y n x)
|
||
-- (λn A B C g f x, cohomology_functor_pcompose g f Y n x)
|
||
-- (λn A, cohomology_psusp A Y n)
|
||
-- (λn A B f, cohomology_psusp_natural f Y n)
|
||
-- (λn A B f, cohomology_exact f Y n)
|
||
-- (λn I A H, spectrum_additive H A Y n)
|
||
end
|
||
end homology
|