200 lines
7.3 KiB
Text
200 lines
7.3 KiB
Text
/-
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Floris van Doorn, Egbert Rijke
|
|
|
|
Constructions with groups
|
|
-/
|
|
|
|
import algebra.group_theory hit.set_quotient types.list types.sum .free_group
|
|
|
|
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod sum list trunc function equiv
|
|
|
|
namespace group
|
|
|
|
variables {G G' : Group} {g g' h h' k : G} {A B : CommGroup}
|
|
|
|
variables (X : Set) {l l' : list (X ⊎ X)}
|
|
|
|
/- Free Commutative Group of a set -/
|
|
namespace free_comm_group
|
|
|
|
inductive fcg_rel : list (X ⊎ X) → list (X ⊎ X) → Type :=
|
|
| rrefl : Πl, fcg_rel l l
|
|
| cancel1 : Πx, fcg_rel [inl x, inr x] []
|
|
| cancel2 : Πx, fcg_rel [inr x, inl x] []
|
|
| rflip : Πx y, fcg_rel [x, y] [y, x]
|
|
| resp_append : Π{l₁ l₂ l₃ l₄}, fcg_rel l₁ l₂ → fcg_rel l₃ l₄ →
|
|
fcg_rel (l₁ ++ l₃) (l₂ ++ l₄)
|
|
| rtrans : Π{l₁ l₂ l₃}, fcg_rel l₁ l₂ → fcg_rel l₂ l₃ →
|
|
fcg_rel l₁ l₃
|
|
|
|
open fcg_rel
|
|
local abbreviation R [reducible] := fcg_rel
|
|
attribute fcg_rel.rrefl [refl]
|
|
attribute fcg_rel.rtrans [trans]
|
|
|
|
definition fcg_carrier [reducible] : Type := set_quotient (λx y, ∥R X x y∥)
|
|
local abbreviation FG := fcg_carrier
|
|
|
|
definition is_reflexive_R : is_reflexive (λx y, ∥R X x y∥) :=
|
|
begin constructor, intro s, apply tr, unfold R end
|
|
local attribute is_reflexive_R [instance]
|
|
|
|
variable {X}
|
|
theorem rel_respect_flip (r : R X l l') : R X (map sum.flip l) (map sum.flip l') :=
|
|
begin
|
|
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂,
|
|
{ reflexivity},
|
|
{ repeat esimp [map], exact cancel2 x},
|
|
{ repeat esimp [map], exact cancel1 x},
|
|
{ repeat esimp [map], apply rflip},
|
|
{ rewrite [+map_append], exact resp_append IH₁ IH₂},
|
|
{ exact rtrans IH₁ IH₂}
|
|
end
|
|
|
|
theorem rel_respect_reverse (r : R X l l') : R X (reverse l) (reverse l') :=
|
|
begin
|
|
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂,
|
|
{ reflexivity},
|
|
{ repeat esimp [map], exact cancel2 x},
|
|
{ repeat esimp [map], exact cancel1 x},
|
|
{ repeat esimp [map], apply rflip},
|
|
{ rewrite [+reverse_append], exact resp_append IH₂ IH₁},
|
|
{ exact rtrans IH₁ IH₂}
|
|
end
|
|
|
|
theorem rel_cons_concat (l s) : R X (s :: l) (concat s l) :=
|
|
begin
|
|
induction l with t l IH,
|
|
{ reflexivity},
|
|
{ rewrite [concat_cons], transitivity (t :: s :: l),
|
|
{ exact resp_append !rflip !rrefl},
|
|
{ exact resp_append (rrefl [t]) IH}}
|
|
end
|
|
|
|
definition fcg_one [constructor] : FG X := class_of []
|
|
definition fcg_inv [unfold 3] : FG X → FG X :=
|
|
quotient_unary_map (reverse ∘ map sum.flip)
|
|
(λl l', trunc_functor -1 (rel_respect_reverse ∘ rel_respect_flip))
|
|
definition fcg_mul [unfold 3 4] : FG X → FG X → FG X :=
|
|
quotient_binary_map append (λl l', trunc.elim (λr m m', trunc.elim (λs, tr (resp_append r s))))
|
|
|
|
section
|
|
local notation 1 := fcg_one
|
|
local postfix ⁻¹ := fcg_inv
|
|
local infix * := fcg_mul
|
|
|
|
theorem fcg_mul_assoc (g₁ g₂ g₃ : FG X) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
|
|
begin
|
|
refine set_quotient.rec_prop _ g₁,
|
|
refine set_quotient.rec_prop _ g₂,
|
|
refine set_quotient.rec_prop _ g₃,
|
|
clear g₁ g₂ g₃, intro g₁ g₂ g₃,
|
|
exact ap class_of !append.assoc
|
|
end
|
|
|
|
theorem fcg_one_mul (g : FG X) : 1 * g = g :=
|
|
begin
|
|
refine set_quotient.rec_prop _ g, clear g, intro g,
|
|
exact ap class_of !append_nil_left
|
|
end
|
|
|
|
theorem fcg_mul_one (g : FG X) : g * 1 = g :=
|
|
begin
|
|
refine set_quotient.rec_prop _ g, clear g, intro g,
|
|
exact ap class_of !append_nil_right
|
|
end
|
|
|
|
theorem fcg_mul_left_inv (g : FG X) : g⁻¹ * g = 1 :=
|
|
begin
|
|
refine set_quotient.rec_prop _ g, clear g, intro g,
|
|
apply eq_of_rel, apply tr,
|
|
induction g with s l IH,
|
|
{ reflexivity},
|
|
{ rewrite [▸*, map_cons, reverse_cons, concat_append],
|
|
refine rtrans _ IH,
|
|
apply resp_append, reflexivity,
|
|
change R X ([flip s, s] ++ l) ([] ++ l),
|
|
apply resp_append,
|
|
induction s, apply cancel2, apply cancel1,
|
|
reflexivity}
|
|
end
|
|
|
|
theorem fcg_mul_comm (g h : FG X) : g * h = h * g :=
|
|
begin
|
|
refine set_quotient.rec_prop _ g, clear g, intro g,
|
|
refine set_quotient.rec_prop _ h, clear h, intro h,
|
|
apply eq_of_rel, apply tr,
|
|
revert h, induction g with s l IH: intro h,
|
|
{ rewrite [append_nil_left, append_nil_right]},
|
|
{ rewrite [append_cons,-concat_append],
|
|
transitivity concat s (l ++ h), apply rel_cons_concat,
|
|
rewrite [-append_concat], apply IH}
|
|
end
|
|
end
|
|
end free_comm_group open free_comm_group
|
|
|
|
variables (X)
|
|
definition group_free_comm_group [constructor] : comm_group (fcg_carrier X) :=
|
|
comm_group.mk fcg_mul _ fcg_mul_assoc fcg_one fcg_one_mul fcg_mul_one
|
|
fcg_inv fcg_mul_left_inv fcg_mul_comm
|
|
|
|
definition free_comm_group [constructor] : CommGroup :=
|
|
CommGroup.mk _ (group_free_comm_group X)
|
|
|
|
/- The universal property of the free commutative group -/
|
|
variables {X A}
|
|
definition free_comm_group_inclusion [constructor] (x : X) : free_comm_group X :=
|
|
class_of [inl x]
|
|
|
|
theorem fgh_helper_respect_comm_rel (f : X → A) (r : fcg_rel X l l')
|
|
: Π(g : A), foldl (fgh_helper f) g l = foldl (fgh_helper f) g l' :=
|
|
begin
|
|
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂: intro g,
|
|
{ reflexivity},
|
|
{ unfold [foldl], apply mul_inv_cancel_right},
|
|
{ unfold [foldl], apply inv_mul_cancel_right},
|
|
{ unfold [foldl, fgh_helper], apply mul.right_comm},
|
|
{ rewrite [+foldl_append, IH₁, IH₂]},
|
|
{ exact !IH₁ ⬝ !IH₂}
|
|
end
|
|
|
|
definition free_comm_group_elim [constructor] (f : X → A) : free_comm_group X →g A :=
|
|
begin
|
|
fapply homomorphism.mk,
|
|
{ intro g, refine set_quotient.elim _ _ g,
|
|
{ intro l, exact foldl (fgh_helper f) 1 l},
|
|
{ intro l l' r, esimp at *, refine trunc.rec _ r, clear r, intro r,
|
|
exact fgh_helper_respect_comm_rel f r 1}},
|
|
{ refine set_quotient.rec_prop _, intro l, refine set_quotient.rec_prop _, intro l',
|
|
esimp, refine !foldl_append ⬝ _, esimp, apply fgh_helper_mul}
|
|
end
|
|
|
|
definition fn_of_free_comm_group_elim [unfold_full] (φ : free_comm_group X →g A) : X → A :=
|
|
φ ∘ free_comm_group_inclusion
|
|
|
|
definition free_comm_group_elim_unique [constructor] (f : X → A) (k : free_comm_group X →g A)
|
|
(H : k ∘ free_comm_group_inclusion ~ f) : k ~ free_comm_group_elim f :=
|
|
begin
|
|
refine set_quotient.rec_prop _, intro l, esimp,
|
|
induction l with s l IH,
|
|
{ esimp [foldl], exact to_respect_one k},
|
|
{ rewrite [foldl_cons, fgh_helper_mul],
|
|
refine to_respect_mul k (class_of [s]) (class_of l) ⬝ _,
|
|
rewrite [IH], apply ap (λx, x * _), induction s: rewrite [▸*, one_mul, -H a],
|
|
apply to_respect_inv }
|
|
end
|
|
|
|
variables (X A)
|
|
definition free_comm_group_elim_equiv_fn [constructor] : (free_comm_group X →g A) ≃ (X → A) :=
|
|
begin
|
|
fapply equiv.MK,
|
|
{ exact fn_of_free_comm_group_elim},
|
|
{ exact free_comm_group_elim},
|
|
{ intro f, apply eq_of_homotopy, intro x, esimp, unfold [foldl], apply one_mul},
|
|
{ intro k, symmetry, apply homomorphism_eq, apply free_comm_group_elim_unique,
|
|
reflexivity }
|
|
end
|
|
|
|
end group
|