Spectral/homotopy/cohomology.hlean
2016-11-23 23:54:32 -05:00

45 lines
1.6 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Reduced cohomology
-/
import .EM algebra.arrow_group .spectrum
open eq spectrum int trunc pointed EM group algebra circle sphere nat EM.ops
definition EM_spectrum /-[constructor]-/ (G : CommGroup) : spectrum :=
spectrum.Mk (K G) (λn, (loop_EM G n)⁻¹ᵉ*)
definition cohomology (X : Type*) (Y : spectrum) (n : ) : CommGroup :=
CommGroup_pmap X (πag[2] (Y (2+n)))
definition ordinary_cohomology [reducible] (X : Type*) (G : CommGroup) (n : ) : CommGroup :=
cohomology X (EM_spectrum G) n
definition ordinary_cohomology_Z [reducible] (X : Type*) (n : ) : CommGroup :=
ordinary_cohomology X ag n
notation `H^` n `[`:0 X:0 `, ` Y:0 `]`:0 := cohomology X Y n
notation `H^` n `[`:0 X:0 `]`:0 := ordinary_cohomology_Z X n
check H^3[S¹*,EM_spectrum ag]
check H^3[S¹*]
definition unpointed_cohomology (X : Type) (Y : spectrum) (n : ) : CommGroup :=
cohomology X₊ Y n
definition cohomology_homomorphism [constructor] {X X' : Type*} (f : X' →* X) (Y : spectrum)
(n : ) : cohomology X Y n →g cohomology X' Y n :=
Group_pmap_homomorphism f (πag[2] (Y (2+n)))
definition cohomology_homomorphism_id (X : Type*) (Y : spectrum) (n : ) (f : H^n[X, Y]) :
cohomology_homomorphism (pid X) Y n f ~* f :=
!pcompose_pid
definition cohomology_homomorphism_compose {X X' X'' : Type*} (g : X'' →* X') (f : X' →* X)
(Y : spectrum) (n : ) (h : H^n[X, Y]) : cohomology_homomorphism (f ∘* g) Y n h ~*
cohomology_homomorphism g Y n (cohomology_homomorphism f Y n h) :=
!passoc⁻¹*