168 lines
6.7 KiB
Text
168 lines
6.7 KiB
Text
/-
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Author: Floris van Doorn
|
|
|
|
Basic group theory
|
|
-/
|
|
|
|
import algebra.group hit.set_quotient
|
|
|
|
open eq algebra is_trunc set_quotient relation
|
|
|
|
namespace group
|
|
|
|
definition Group_of_CommGroup [coercion] [constructor] (G : CommGroup) : Group :=
|
|
Group.mk G _
|
|
|
|
structure subgroup (G : Group) :=
|
|
(R : G → hprop)
|
|
(Rone : R one)
|
|
(Rmul : Π{g h}, R g → R h → R (g * h))
|
|
(Rinv : Π{g}, R g → R (g⁻¹))
|
|
|
|
structure normal_subgroup (G : Group) extends subgroup G :=
|
|
(is_normal : Π{g} h, R g → R (h * g * h⁻¹))
|
|
|
|
attribute subgroup.R [coercion]
|
|
abbreviation subgroup_rel [unfold 2] := @subgroup.R
|
|
abbreviation subgroup_has_one [unfold 2] := @subgroup.Rone
|
|
abbreviation subgroup_respect_mul [unfold 2] := @subgroup.Rmul
|
|
abbreviation subgroup_respect_inv [unfold 2] := @subgroup.Rinv
|
|
abbreviation is_normal_subgroup [unfold 2] := @normal_subgroup.is_normal
|
|
|
|
variables {G : Group} (R : normal_subgroup G) {g g' h h' k : G}
|
|
|
|
theorem is_normal_subgroup' (h : G) (r : R g) : R (h⁻¹ * g * h) :=
|
|
inv_inv h ▸ is_normal_subgroup R h⁻¹ r
|
|
|
|
theorem is_normal_subgroup_rev (h : G) (r : R (h * g * h⁻¹)) : R g :=
|
|
have H : h⁻¹ * (h * g * h⁻¹) * h = g, from calc
|
|
h⁻¹ * (h * g * h⁻¹) * h = h⁻¹ * (h * g) * h⁻¹ * h : by rewrite [-mul.assoc h⁻¹]
|
|
... = h⁻¹ * (h * g) : by rewrite [inv_mul_cancel_right]
|
|
... = g : inv_mul_cancel_left,
|
|
H ▸ is_normal_subgroup' R h r
|
|
|
|
theorem is_normal_subgroup_rev' (h : G) (r : R (h⁻¹ * g * h)) : R g :=
|
|
is_normal_subgroup_rev R h⁻¹ ((inv_inv h)⁻¹ ▸ r)
|
|
|
|
theorem normal_subgroup_insert (r : R k) (r' : R (g * h)) : R (g * (k * h)) :=
|
|
have H1 : R ((g * h) * (h⁻¹ * k * h)), from
|
|
subgroup_respect_mul R r' (is_normal_subgroup' R h r),
|
|
have H2 : (g * h) * (h⁻¹ * k * h) = g * (k * h), from calc
|
|
(g * h) * (h⁻¹ * k * h) = g * (h * (h⁻¹ * k * h)) : mul.assoc
|
|
... = g * (h * (h⁻¹ * (k * h))) : by rewrite [mul.assoc h⁻¹]
|
|
... = g * (k * h) : by rewrite [mul_inv_cancel_left],
|
|
show R (g * (k * h)), from H2 ▸ H1
|
|
|
|
definition quotient_rel (g h : G) : hprop := R (g * h⁻¹)
|
|
|
|
variable {R}
|
|
theorem quotient_rel_refl (g : G) : quotient_rel R g g :=
|
|
transport (λx, R x) !mul.right_inv⁻¹ (subgroup_has_one R)
|
|
theorem quotient_rel_symm (r : quotient_rel R g h) : quotient_rel R h g :=
|
|
transport (λx, R x) (!mul_inv ⬝ ap (λx, x * _) !inv_inv) (subgroup_respect_inv R r)
|
|
|
|
theorem quotient_rel_trans (r : quotient_rel R g h) (s : quotient_rel R h k)
|
|
: quotient_rel R g k :=
|
|
have H1 : R ((g * h⁻¹) * (h * k⁻¹)), from subgroup_respect_mul R r s,
|
|
have H2 : (g * h⁻¹) * (h * k⁻¹) = g * k⁻¹, from calc
|
|
(g * h⁻¹) * (h * k⁻¹) = ((g * h⁻¹) * h) * k⁻¹ : by rewrite [mul.assoc (g * h⁻¹)]
|
|
... = g * k⁻¹ : by rewrite inv_mul_cancel_right,
|
|
show R (g * k⁻¹), from H2 ▸ H1
|
|
|
|
theorem quotient_rel_resp_inv (r : quotient_rel R g h) : quotient_rel R g⁻¹ h⁻¹ :=
|
|
have H1 : R (g⁻¹ * (h * g⁻¹) * g), from
|
|
is_normal_subgroup' R g (quotient_rel_symm r),
|
|
have H2 : g⁻¹ * (h * g⁻¹) * g = g⁻¹ * h⁻¹⁻¹, from calc
|
|
g⁻¹ * (h * g⁻¹) * g = g⁻¹ * h * g⁻¹ * g : by rewrite -mul.assoc
|
|
... = g⁻¹ * h : inv_mul_cancel_right
|
|
... = g⁻¹ * h⁻¹⁻¹ : by rewrite algebra.inv_inv,
|
|
show R (g⁻¹ * h⁻¹⁻¹), from H2 ▸ H1
|
|
|
|
theorem quotient_rel_resp_mul (r : quotient_rel R g h) (r' : quotient_rel R g' h')
|
|
: quotient_rel R (g * g') (h * h') :=
|
|
have H1 : R (g * ((g' * h'⁻¹) * h⁻¹)), from
|
|
normal_subgroup_insert R r' r,
|
|
have H2 : g * ((g' * h'⁻¹) * h⁻¹) = (g * g') * (h * h')⁻¹, from calc
|
|
g * ((g' * h'⁻¹) * h⁻¹) = g * (g' * (h'⁻¹ * h⁻¹)) : by rewrite [mul.assoc]
|
|
... = (g * g') * (h'⁻¹ * h⁻¹) : mul.assoc
|
|
... = (g * g') * (h * h')⁻¹ : by rewrite [mul_inv],
|
|
show R ((g * g') * (h * h')⁻¹), from H2 ▸ H1
|
|
|
|
theorem is_equivalence_quotient_rel : is_equivalence (quotient_rel R) :=
|
|
is_equivalence.mk quotient_rel_refl
|
|
(λg h, quotient_rel_symm)
|
|
(λg h k, quotient_rel_trans)
|
|
|
|
local attribute is_equivalence_quotient_rel [instance]
|
|
variable (R)
|
|
definition qg : Type := set_quotient (quotient_rel R)
|
|
variable {R}
|
|
local attribute qg [reducible]
|
|
|
|
definition quotient_one [constructor] : qg R := class_of one
|
|
definition quotient_inv [unfold 3] : qg R → qg R :=
|
|
quotient_unary_map has_inv.inv (λg g' r, quotient_rel_resp_inv r)
|
|
definition quotient_mul [unfold 3 4] : qg R → qg R → qg R :=
|
|
quotient_binary_map has_mul.mul (λg g' r h h' r', quotient_rel_resp_mul r r')
|
|
|
|
section
|
|
local notation 1 := quotient_one
|
|
local postfix ⁻¹ := quotient_inv
|
|
local infix * := quotient_mul
|
|
|
|
theorem quotient_mul_assoc (g₁ g₂ g₃ : qg R) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
|
|
begin
|
|
refine set_quotient.rec_hprop _ g₁,
|
|
refine set_quotient.rec_hprop _ g₂,
|
|
refine set_quotient.rec_hprop _ g₃,
|
|
clear g₁ g₂ g₃, intro g₁ g₂ g₃,
|
|
exact ap class_of !mul.assoc
|
|
end
|
|
|
|
theorem quotient_one_mul (g : qg R) : 1 * g = g :=
|
|
begin
|
|
refine set_quotient.rec_hprop _ g, clear g, intro g,
|
|
exact ap class_of !one_mul
|
|
end
|
|
|
|
theorem quotient_mul_one (g : qg R) : g * 1 = g :=
|
|
begin
|
|
refine set_quotient.rec_hprop _ g, clear g, intro g,
|
|
exact ap class_of !mul_one
|
|
end
|
|
|
|
theorem quotient_mul_left_inv (g : qg R) : g⁻¹ * g = 1 :=
|
|
begin
|
|
refine set_quotient.rec_hprop _ g, clear g, intro g,
|
|
exact ap class_of !mul.left_inv
|
|
end
|
|
|
|
theorem quotient_mul_comm {G : CommGroup} {R : normal_subgroup G} (g h : qg R)
|
|
: g * h = h * g :=
|
|
begin
|
|
refine set_quotient.rec_hprop _ g, clear g, intro g,
|
|
refine set_quotient.rec_hprop _ h, clear h, intro h,
|
|
apply ap class_of, esimp, apply mul.comm
|
|
end
|
|
|
|
end
|
|
|
|
variable (R)
|
|
definition group_qg [constructor] : group (qg R) :=
|
|
group.mk quotient_mul _ quotient_mul_assoc quotient_one quotient_one_mul quotient_mul_one
|
|
quotient_inv quotient_mul_left_inv
|
|
|
|
definition quotient_group [constructor] : Group :=
|
|
Group.mk _ (group_qg R)
|
|
|
|
definition comm_group_qg [constructor] {G : CommGroup} (R : normal_subgroup G)
|
|
: comm_group (qg R) :=
|
|
⦃comm_group, group_qg R, mul_comm := quotient_mul_comm⦄
|
|
|
|
definition quotient_comm_group [constructor] {G : CommGroup} (R : normal_subgroup G)
|
|
: CommGroup :=
|
|
CommGroup.mk _ (comm_group_qg R)
|
|
|
|
end group
|