Spectral/homotopy/smash_adjoint.hlean
Floris van Doorn cfdfa0f22a Work on the fact that pointed dependent products preserve fibration sequences
We now define pointed homotopies as dependent pointed maps, and have some properties about pointed sigmas
2017-06-19 02:03:54 -04:00

579 lines
26 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Authors: Floris van Doorn
-- in collaboration with Egbert, Stefano, Robin, Ulrik
/- the adjunction between the smash product and pointed maps -/
import .smash .susp ..pointed ..move_to_lib
open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge is_trunc
function unit sigma susp sphere
namespace smash
variables {A A' B B' C C' X X' : Type*}
/- we start by defining the unit of the adjunction -/
definition pinl [constructor] (A : Type*) {B : Type*} (b : B) : A →* A ∧ B :=
begin
fapply pmap.mk,
{ intro a, exact smash.mk a b },
{ exact gluer' b pt }
end
definition pinl_phomotopy {b b' : B} (p : b = b') : pinl A b ~* pinl A b' :=
begin
fapply phomotopy.mk,
{ exact ap010 (pmap.to_fun ∘ pinl A) p },
{ induction p, apply idp_con }
end
definition smash_pmap_unit_pt [constructor] (A B : Type*)
: pinl A pt ~* pconst A (A ∧ B) :=
begin
fapply phomotopy.mk,
{ intro a, exact gluel' a pt },
{ rexact con.right_inv (gluel pt) ⬝ (con.right_inv (gluer pt))⁻¹ }
end
/- We chose an unfortunate order of arguments, but it might be bothersome to change it-/
definition smash_pmap_unit [constructor] (A B : Type*) : B →* ppmap A (A ∧ B) :=
begin
fapply pmap.mk,
{ exact pinl A },
{ apply eq_of_phomotopy, exact smash_pmap_unit_pt A B }
end
/- The unit is natural in the second argument -/
definition smash_functor_pid_pinl' [constructor] {A B C : Type*} (b : B) (f : B →* C) :
pinl A (f b) ~* smash_functor (pid A) f ∘* pinl A b :=
begin
fapply phomotopy.mk,
{ intro a, reflexivity },
{ refine !idp_con ⬝ _,
induction C with C c₀, induction f with f f₀, esimp at *,
induction f₀, rexact functor_gluer'2 (@id A) f b pt }
end
definition smash_pmap_unit_pt_natural [constructor] (f : B →* C) :
smash_functor_pid_pinl' pt f ⬝*
pwhisker_left (smash_functor (pid A) f) (smash_pmap_unit_pt A B) ⬝*
pcompose_pconst (smash_functor (pid A) f) =
pinl_phomotopy (respect_pt f) ⬝* smash_pmap_unit_pt A C :=
begin
induction f with f f₀, induction C with C c₀, esimp at *,
induction f₀, refine _ ⬝ !refl_trans⁻¹,
refine !trans_refl ⬝ _,
fapply phomotopy_eq',
{ intro a, refine !idp_con ⬝ _,
rexact functor_gluel'2 (pid A) f a pt },
{ refine whisker_right_idp _ ⬝ph _,
refine ap (λx, _ ⬝ x) _ ⬝ph _,
rotate 1, rexact (functor_gluel'2_same (pid A) f pt),
refine whisker_right _ !idp_con ⬝pv _,
refine !con.assoc⁻¹ ⬝ph _, apply whisker_bl,
refine whisker_left _ !to_homotopy_pt_mk ⬝pv _,
refine !con.assoc⁻¹ ⬝ whisker_right _ _ ⬝pv _,
rotate 1, esimp, apply whisker_left_idp_con,
refine !con.assoc ⬝pv _, apply whisker_tl,
refine whisker_right _ !idp_con ⬝pv _,
refine whisker_right _ !whisker_right_idp ⬝pv _,
refine whisker_right _ (!idp_con ⬝ !ap02_con) ⬝ !con.assoc ⬝pv _,
apply whisker_tl,
apply vdeg_square,
refine whisker_right _ !ap_inv ⬝ _, apply inv_con_eq_of_eq_con,
rexact functor_gluer'2_same (pmap_of_map id (Point A)) (pmap_of_map f pt) pt }
end
definition smash_pmap_unit_natural (f : B →* C) :
smash_pmap_unit A C ∘* f ~*
ppcompose_left (smash_functor (pid A) f) ∘* smash_pmap_unit A B :=
begin
induction A with A a₀, induction B with B b₀, induction C with C c₀,
induction f with f f₀, esimp at *, induction f₀, fapply phomotopy_mk_ppmap,
{ esimp [pcompose], intro b, exact smash_functor_pid_pinl' b (pmap_of_map f b₀) },
{ refine ap (λx, _ ⬝* phomotopy_of_eq x) !respect_pt_pcompose ⬝ _
⬝ ap phomotopy_of_eq !respect_pt_pcompose⁻¹,
esimp, refine _ ⬝ ap phomotopy_of_eq !idp_con⁻¹,
refine _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹,
refine ap (λx, _ ⬝* phomotopy_of_eq (x ⬝ _)) !pcompose_left_eq_of_phomotopy ⬝ _,
refine ap (λx, _ ⬝* x) (!phomotopy_of_eq_con ⬝
!phomotopy_of_eq_of_phomotopy ◾** !phomotopy_of_eq_of_phomotopy ⬝ !trans_refl) ⬝ _,
refine _ ⬝ smash_pmap_unit_pt_natural (pmap_of_map f b₀) ⬝ _,
{ exact !trans_refl⁻¹ },
{ exact !refl_trans }}
end
/- The counit -/
definition smash_pmap_counit_map [unfold 3] (af : A ∧ (ppmap A B)) : B :=
begin
induction af with a f a f,
{ exact f a },
{ exact pt },
{ exact pt },
{ reflexivity },
{ exact respect_pt f }
end
definition smash_pmap_counit [constructor] (A B : Type*) : A ∧ (ppmap A B) →* B :=
begin
fapply pmap.mk,
{ exact smash_pmap_counit_map },
{ reflexivity }
end
/- The counit is natural in both arguments -/
definition smash_pmap_counit_natural_right (g : B →* C) : g ∘* smash_pmap_counit A B ~*
smash_pmap_counit A C ∘* smash_functor (pid A) (ppcompose_left g) :=
begin
symmetry,
fapply phomotopy.mk,
{ intro af, induction af with a f a f,
{ reflexivity },
{ exact (respect_pt g)⁻¹ },
{ exact (respect_pt g)⁻¹ },
{ apply eq_pathover,
refine ap_compose (smash_pmap_counit A C) _ _ ⬝ph _ ⬝hp (ap_compose g _ _)⁻¹,
refine ap02 _ !functor_gluel ⬝ph _ ⬝hp ap02 _ !elim_gluel⁻¹,
refine !ap_con ⬝ !ap_compose'⁻¹ ◾ !elim_gluel ⬝ph _⁻¹ʰ,
apply square_of_eq_bot, refine !idp_con ⬝ _,
induction C with C c₀, induction g with g g₀, esimp at *,
induction g₀, refine ap02 _ !eq_of_phomotopy_refl },
{ apply eq_pathover,
refine ap_compose (smash_pmap_counit A C) _ _ ⬝ph _ ⬝hp (ap_compose g _ _)⁻¹,
refine ap02 _ !functor_gluer ⬝ph _ ⬝hp ap02 _ !elim_gluer⁻¹,
refine !ap_con ⬝ !ap_compose'⁻¹ ◾ !elim_gluer ⬝ph _,
refine !idp_con ⬝ph _, apply square_of_eq,
refine !idp_con ⬝ !con_inv_cancel_right⁻¹ }},
{ refine !idp_con ⬝ !idp_con ⬝ _, refine _ ⬝ !ap_compose',
refine _ ⬝ (ap_is_constant respect_pt _)⁻¹, refine !idp_con⁻¹ }
end
definition smash_pmap_counit_natural_left (g : A →* A') :
smash_pmap_counit A' B ∘* g ∧→ (pid (ppmap A' B)) ~*
smash_pmap_counit A B ∘* (pid A) ∧→ (ppcompose_right g) :=
begin
fapply phomotopy.mk,
{ intro af, induction af with a f a f,
{ reflexivity },
{ reflexivity },
{ reflexivity },
{ apply eq_pathover, apply hdeg_square,
refine ap_compose !smash_pmap_counit _ _ ⬝ ap02 _ (!elim_gluel ⬝ !idp_con) ⬝
!elim_gluel ⬝ _,
refine (ap_compose !smash_pmap_counit _ _ ⬝ ap02 _ !elim_gluel ⬝ !ap_con ⬝
!ap_compose'⁻¹ ◾ !elim_gluel ⬝ !con_idp ⬝ _)⁻¹,
refine !to_fun_eq_of_phomotopy ⬝ _, reflexivity },
{ apply eq_pathover, apply hdeg_square,
refine ap_compose !smash_pmap_counit _ _ ⬝ ap02 _ !elim_gluer ⬝ !ap_con ⬝
!ap_compose'⁻¹ ◾ !elim_gluer ⬝ _,
refine (ap_compose !smash_pmap_counit _ _ ⬝ ap02 _ !elim_gluer ⬝ !ap_con ⬝
!ap_compose'⁻¹ ◾ !elim_gluer ⬝ !idp_con)⁻¹ }},
{ refine !idp_con ⬝ _, refine !ap_compose'⁻¹ ⬝ _ ⬝ !ap_ap011⁻¹, esimp,
refine !to_fun_eq_of_phomotopy ⬝ _, exact !ap_constant⁻¹, }
end
/- The unit-counit laws -/
definition smash_pmap_unit_counit (A B : Type*) :
smash_pmap_counit A (A ∧ B) ∘* smash_functor (pid A) (smash_pmap_unit A B) ~* pid (A ∧ B) :=
begin
fapply phomotopy.mk,
{ intro x,
induction x with a b a b,
{ reflexivity },
{ exact gluel pt },
{ exact gluer pt },
{ apply eq_pathover_id_right,
refine ap_compose smash_pmap_counit_map _ _ ⬝ ap02 _ !functor_gluel ⬝ph _,
refine !ap_con ⬝ !ap_compose'⁻¹ ◾ !elim_gluel ⬝ph _,
refine !ap_eq_of_phomotopy ⬝ph _,
apply square_of_eq, refine !idp_con ⬝ !inv_con_cancel_right⁻¹ },
{ apply eq_pathover_id_right,
refine ap_compose smash_pmap_counit_map _ _ ⬝ ap02 _ !functor_gluer ⬝ph _,
refine !ap_con ⬝ !ap_compose'⁻¹ ◾ !elim_gluer ⬝ph _,
refine !idp_con ⬝ph _,
apply square_of_eq, refine !idp_con ⬝ !inv_con_cancel_right⁻¹ }},
{ refine _ ⬝ !ap_compose', refine _ ⬝ (ap_is_constant respect_pt _)⁻¹,
rexact (con.right_inv (gluer pt))⁻¹ }
end
definition smash_pmap_counit_unit_pt [constructor] (f : A →* B) :
smash_pmap_counit A B ∘* pinl A f ~* f :=
begin
fapply phomotopy.mk,
{ intro a, reflexivity },
{ refine !idp_con ⬝ !elim_gluer'⁻¹ }
end
definition smash_pmap_counit_unit (A B : Type*) :
ppcompose_left (smash_pmap_counit A B) ∘* smash_pmap_unit A (ppmap A B) ~* pid (ppmap A B) :=
begin
fapply phomotopy_mk_ppmap,
{ intro f, exact smash_pmap_counit_unit_pt f },
{ refine !trans_refl ⬝ _,
refine _ ⬝ ap (λx, phomotopy_of_eq (x ⬝ _)) !pcompose_left_eq_of_phomotopy⁻¹,
refine _ ⬝ !phomotopy_of_eq_con⁻¹,
refine _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹ ◾** !phomotopy_of_eq_of_phomotopy⁻¹,
refine _ ⬝ !trans_refl⁻¹,
fapply phomotopy_eq,
{ intro a, esimp, refine !elim_gluel'⁻¹ },
{ esimp, refine whisker_right _ !whisker_right_idp ⬝ _ ⬝ !idp_con⁻¹,
refine whisker_right _ !elim_gluel'_same⁻² ⬝ _ ⬝ !elim_gluer'_same⁻¹⁻²,
apply inv_con_eq_of_eq_con, refine !idp_con ⬝ _, esimp,
refine _ ⬝ !ap02_con ⬝ whisker_left _ !ap_inv,
refine !whisker_right_idp ⬝ _,
exact !idp_con }}
end
/- The underlying (unpointed) functions of the equivalence A →* (B →* C) ≃* A ∧ B →* C) -/
definition smash_elim [constructor] (f : A →* ppmap B C) : B ∧ A →* C :=
smash_pmap_counit B C ∘* smash_functor (pid B) f
definition smash_elim_inv [constructor] (g : A ∧ B →* C) : B →* ppmap A C :=
ppcompose_left g ∘* smash_pmap_unit A B
/- They are inverses, constant on the constant function and natural -/
definition smash_elim_left_inv (f : A →* ppmap B C) : smash_elim_inv (smash_elim f) ~* f :=
begin
refine !pwhisker_right !ppcompose_left_pcompose ⬝* _,
refine !passoc ⬝* _,
refine !pwhisker_left !smash_pmap_unit_natural⁻¹* ⬝* _,
refine !passoc⁻¹* ⬝* _,
refine !pwhisker_right !smash_pmap_counit_unit ⬝* _,
apply pid_pcompose
end
definition smash_elim_right_inv (g : A ∧ B →* C) : smash_elim (smash_elim_inv g) ~* g :=
begin
refine !pwhisker_left !smash_functor_pid_pcompose ⬝* _,
refine !passoc⁻¹* ⬝* _,
refine !pwhisker_right !smash_pmap_counit_natural_right⁻¹* ⬝* _,
refine !passoc ⬝* _,
refine !pwhisker_left !smash_pmap_unit_counit ⬝* _,
apply pcompose_pid
end
definition smash_elim_pconst (A B C : Type*) :
smash_elim (pconst B (ppmap A C)) ~* pconst (A ∧ B) C :=
begin
refine pwhisker_left _ (smash_functor_pconst_right (pid A)) ⬝* !pcompose_pconst
end
definition smash_elim_inv_pconst (A B C : Type*) :
smash_elim_inv (pconst (A ∧ B) C) ~* pconst B (ppmap A C) :=
begin
fapply phomotopy_mk_ppmap,
{ intro f, apply pconst_pcompose },
{ esimp, refine !trans_refl ⬝ _,
refine _ ⬝ (!phomotopy_of_eq_con ⬝ (ap phomotopy_of_eq !pcompose_left_eq_of_phomotopy ⬝
!phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy)⁻¹,
apply pconst_pcompose_phomotopy_pconst }
end
definition smash_elim_natural_right {A B C C' : Type*} (f : C →* C')
(g : B →* ppmap A C) : f ∘* smash_elim g ~* smash_elim (ppcompose_left f ∘* g) :=
begin
refine _ ⬝* pwhisker_left _ !smash_functor_pid_pcompose⁻¹*,
refine !passoc⁻¹* ⬝* pwhisker_right _ _ ⬝* !passoc,
apply smash_pmap_counit_natural_right
end
definition smash_elim_inv_natural_right {A B C C' : Type*} (f : C →* C')
(g : A ∧ B →* C) : ppcompose_left f ∘* smash_elim_inv g ~* smash_elim_inv (f ∘* g) :=
begin
refine !passoc⁻¹* ⬝* pwhisker_right _ _,
exact !ppcompose_left_pcompose⁻¹*
end
definition smash_elim_natural_left (f : A →* A') (g : B →* B')
(h : B' →* ppmap A' C) : smash_elim h ∘* (f ∧→ g) ~* smash_elim (ppcompose_right f ∘* h ∘* g) :=
begin
refine !smash_functor_pid_pcompose ⬝ph* _,
refine _ ⬝v* !smash_pmap_counit_natural_left,
refine smash_functor_psquare (pvrefl f) !pid_pcompose⁻¹*
end
definition smash_elim_phomotopy {f f' : A →* ppmap B C}
(p : f ~* f') : smash_elim f ~* smash_elim f' :=
begin
apply pwhisker_left,
exact smash_functor_phomotopy phomotopy.rfl p
end
definition smash_elim_inv_phomotopy {f f' : A ∧ B →* C}
(p : f ~* f') : smash_elim_inv f ~* smash_elim_inv f' :=
pwhisker_right _ (ppcompose_left_phomotopy p)
definition smash_elim_eq_of_phomotopy {f f' : A →* ppmap B C}
(p : f ~* f') : ap smash_elim (eq_of_phomotopy p) = eq_of_phomotopy (smash_elim_phomotopy p) :=
begin
induction p using phomotopy_rec_on_idp,
refine ap02 _ !eq_of_phomotopy_refl ⬝ _,
refine !eq_of_phomotopy_refl⁻¹ ⬝ _,
apply ap eq_of_phomotopy,
refine _ ⬝ ap (pwhisker_left _) !smash_functor_phomotopy_refl⁻¹,
refine !pwhisker_left_refl⁻¹
end
definition smash_elim_inv_eq_of_phomotopy {f f' : A ∧ B →* C} (p : f ~* f') :
ap smash_elim_inv (eq_of_phomotopy p) = eq_of_phomotopy (smash_elim_inv_phomotopy p) :=
begin
induction p using phomotopy_rec_on_idp,
refine ap02 _ !eq_of_phomotopy_refl ⬝ _,
refine !eq_of_phomotopy_refl⁻¹ ⬝ _,
apply ap eq_of_phomotopy,
refine _ ⬝ ap (pwhisker_right _) !ppcompose_left_phomotopy_refl⁻¹,
refine !pwhisker_right_refl⁻¹
end
/- The pointed maps of the equivalence A →* (B →* C) ≃* A ∧ B →* C -/
definition smash_pelim [constructor] (A B C : Type*) : ppmap A (ppmap B C) →* ppmap (B ∧ A) C :=
ppcompose_left (smash_pmap_counit B C) ∘* smash_functor_right B A (ppmap B C)
definition smash_pelim_inv [constructor] (A B C : Type*) :
ppmap (B ∧ A) C →* ppmap A (ppmap B C) :=
pmap.mk smash_elim_inv (eq_of_phomotopy !smash_elim_inv_pconst)
/- The forward function is natural in all three arguments -/
definition smash_pelim_natural_right (f : C →* C') :
psquare (smash_pelim A B C) (smash_pelim A B C')
(ppcompose_left (ppcompose_left f)) (ppcompose_left f) :=
smash_functor_right_natural_right (ppcompose_left f) ⬝h*
ppcompose_left_psquare (smash_pmap_counit_natural_right f)
definition smash_pelim_natural_left (B C : Type*) (f : A' →* A) :
psquare (smash_pelim A B C) (smash_pelim A' B C)
(ppcompose_right f) (ppcompose_right (pid B ∧→ f)) :=
smash_functor_right_natural_middle f ⬝h* !ppcompose_left_ppcompose_right
definition smash_pelim_natural_middle (A C : Type*) (g : B' →* B) :
psquare (smash_pelim A B C) (smash_pelim A B' C)
(ppcompose_left (ppcompose_right g)) (ppcompose_right (g ∧→ pid A)) :=
pwhisker_tl _ !ppcompose_left_ppcompose_right ⬝*
(!smash_functor_right_natural_left⁻¹* ⬝pv*
smash_functor_right_natural_right (ppcompose_right g) ⬝h*
ppcompose_left_psquare !smash_pmap_counit_natural_left)
definition smash_pelim_natural_lm (C : Type*) (f : A' →* A) (g : B' →* B) :
psquare (smash_pelim A B C) (smash_pelim A' B' C)
(ppcompose_left (ppcompose_right g) ∘* ppcompose_right f) (ppcompose_right (g ∧→ f)) :=
smash_pelim_natural_left B C f ⬝v* smash_pelim_natural_middle A' C g ⬝hp*
ppcompose_right_phomotopy proof !smash_functor_split qed ⬝* !ppcompose_right_pcompose
/- The equivalence (note: the forward function of smash_adjoint_pmap is smash_pelim_inv) -/
definition is_equiv_smash_elim [constructor] (A B C : Type*) : is_equiv (@smash_elim A B C) :=
begin
fapply adjointify,
{ exact smash_elim_inv },
{ intro g, apply eq_of_phomotopy, exact smash_elim_right_inv g },
{ intro f, apply eq_of_phomotopy, exact smash_elim_left_inv f }
end
definition smash_adjoint_pmap_inv [constructor] (A B C : Type*) :
ppmap B (ppmap A C) ≃* ppmap (A ∧ B) C :=
pequiv_of_pmap (smash_pelim B A C) (is_equiv_smash_elim B A C)
definition smash_adjoint_pmap [constructor] (A B C : Type*) :
ppmap (A ∧ B) C ≃* ppmap B (ppmap A C) :=
(smash_adjoint_pmap_inv A B C)⁻¹ᵉ*
/- The naturality of the equivalence is a direct consequence of the earlier naturalities -/
definition smash_adjoint_pmap_natural_right_pt {A B C C' : Type*} (f : C →* C') (g : A ∧ B →* C) :
ppcompose_left f ∘* smash_adjoint_pmap A B C g ~* smash_adjoint_pmap A B C' (f ∘* g) :=
begin
refine !passoc⁻¹* ⬝* pwhisker_right _ _,
exact !ppcompose_left_pcompose⁻¹*
end
definition smash_adjoint_pmap_inv_natural_right_pt {A B C C' : Type*} (f : C →* C')
(g : B →* ppmap A C) : f ∘* (smash_adjoint_pmap A B C)⁻¹ᵉ* g ~*
(smash_adjoint_pmap A B C')⁻¹ᵉ* (ppcompose_left f ∘* g) :=
begin
refine _ ⬝* pwhisker_left _ !smash_functor_pid_pcompose⁻¹*,
refine !passoc⁻¹* ⬝* pwhisker_right _ _ ⬝* !passoc,
apply smash_pmap_counit_natural_right
end
definition smash_adjoint_pmap_inv_natural_right [constructor] {A B C C' : Type*} (f : C →* C') :
ppcompose_left f ∘* smash_adjoint_pmap_inv A B C ~*
smash_adjoint_pmap_inv A B C' ∘* ppcompose_left (ppcompose_left f) :=
smash_pelim_natural_right f
definition smash_adjoint_pmap_natural_right [constructor] {A B C C' : Type*} (f : C →* C') :
ppcompose_left (ppcompose_left f) ∘* smash_adjoint_pmap A B C ~*
smash_adjoint_pmap A B C' ∘* ppcompose_left f :=
(smash_adjoint_pmap_inv_natural_right f)⁻¹ʰ*
definition smash_adjoint_pmap_natural_lm (C : Type*) (f : A →* A') (g : B →* B') :
psquare (smash_adjoint_pmap A' B' C) (smash_adjoint_pmap A B C)
(ppcompose_right (f ∧→ g)) (ppcompose_left (ppcompose_right f) ∘* ppcompose_right g) :=
proof (!smash_pelim_natural_lm)⁻¹ʰ* qed
/- Corollary: associativity of smash -/
definition smash_assoc_elim_equiv (A B C X : Type*) :
ppmap (A ∧ (B ∧ C)) X ≃* ppmap ((A ∧ B) ∧ C) X :=
calc
ppmap (A ∧ (B ∧ C)) X ≃* ppmap (B ∧ C) (ppmap A X) : smash_adjoint_pmap A (B ∧ C) X
... ≃* ppmap C (ppmap B (ppmap A X)) : smash_adjoint_pmap B C (ppmap A X)
... ≃* ppmap C (ppmap (A ∧ B) X) : pequiv_ppcompose_left (smash_adjoint_pmap_inv A B X)
... ≃* ppmap ((A ∧ B) ∧ C) X : smash_adjoint_pmap_inv (A ∧ B) C X
definition smash_assoc_elim_equiv_fn (A B C X : Type*) (f : A ∧ (B ∧ C) →* X) :
(A ∧ B) ∧ C →* X :=
smash_elim (ppcompose_left (smash_adjoint_pmap A B X)⁻¹ᵉ* (smash_elim_inv (smash_elim_inv f)))
definition smash_assoc_elim_natural_right (A B C : Type*) (f : X →* X') :
psquare (smash_assoc_elim_equiv A B C X) (smash_assoc_elim_equiv A B C X')
(ppcompose_left f) (ppcompose_left f) :=
!smash_adjoint_pmap_natural_right ⬝h*
!smash_adjoint_pmap_natural_right ⬝h*
ppcompose_left_psquare !smash_adjoint_pmap_inv_natural_right ⬝h*
!smash_adjoint_pmap_inv_natural_right
/-
We could prove the following two pointed homotopies by applying smash_assoc_elim_natural_right
to g, but we give a more explicit proof
-/
definition smash_assoc_elim_natural_right_pt {A B C X X' : Type*} (f : X →* X')
(g : A ∧ (B ∧ C) →* X) :
f ∘* smash_assoc_elim_equiv A B C X g ~* smash_assoc_elim_equiv A B C X' (f ∘* g) :=
begin
refine !smash_adjoint_pmap_inv_natural_right_pt ⬝* _,
apply smash_elim_phomotopy,
refine !passoc⁻¹* ⬝* _,
refine pwhisker_right _ !smash_adjoint_pmap_inv_natural_right ⬝* _,
refine !passoc ⬝* _,
apply pwhisker_left,
refine !smash_adjoint_pmap_natural_right_pt ⬝* _,
apply smash_elim_inv_phomotopy,
refine !smash_adjoint_pmap_natural_right_pt
end
definition smash_assoc_elim_inv_natural_right_pt {A B C X X' : Type*} (f : X →* X')
(g : (A ∧ B) ∧ C →* X) :
f ∘* (smash_assoc_elim_equiv A B C X)⁻¹ᵉ* g ~* (smash_assoc_elim_equiv A B C X')⁻¹ᵉ* (f ∘* g) :=
begin
refine !smash_adjoint_pmap_inv_natural_right_pt ⬝* _,
apply smash_elim_phomotopy,
refine !passoc⁻¹* ⬝* _,
refine pwhisker_right _ !smash_pmap_counit_natural_right ⬝* _,
refine !passoc ⬝* _,
apply pwhisker_left,
refine !smash_functor_pid_pcompose⁻¹* ⬝* _,
apply smash_functor_phomotopy phomotopy.rfl,
refine !passoc⁻¹* ⬝* _,
refine pwhisker_right _ (smash_adjoint_pmap_natural_right f) ⬝* _,
refine !passoc ⬝* _,
apply pwhisker_left,
apply smash_elim_inv_natural_right
end
definition smash_assoc (A B C : Type*) : A ∧ (B ∧ C) ≃* (A ∧ B) ∧ C :=
begin
fapply pequiv.MK,
{ exact !smash_assoc_elim_equiv⁻¹ᵉ* !pid },
{ exact !smash_assoc_elim_equiv !pid },
{ refine !smash_assoc_elim_inv_natural_right_pt ⬝* _,
refine pap !smash_assoc_elim_equiv⁻¹ᵉ* !pcompose_pid ⬝* _,
apply phomotopy_of_eq, apply to_left_inv !smash_assoc_elim_equiv },
{ refine !smash_assoc_elim_natural_right_pt ⬝* _,
refine pap !smash_assoc_elim_equiv !pcompose_pid ⬝* _,
apply phomotopy_of_eq, apply to_right_inv !smash_assoc_elim_equiv }
end
/- the associativity of smash is natural in all arguments -/
definition smash_assoc_elim_natural_left (X : Type*)
(f : A →* A') (g : B →* B') (h : C →* C') :
psquare (smash_assoc_elim_equiv A' B' C' X) (smash_assoc_elim_equiv A B C X)
(ppcompose_right (f ∧→ g ∧→ h)) (ppcompose_right ((f ∧→ g) ∧→ h)) :=
begin
refine !smash_adjoint_pmap_natural_lm ⬝h* _ ⬝h*
(!ppcompose_left_ppcompose_right ⬝v* ppcompose_left_psquare !smash_pelim_natural_lm) ⬝h*
!smash_pelim_natural_lm,
refine !ppcompose_left_ppcompose_right⁻¹* ⬝ph* _,
refine _ ⬝hp* pwhisker_right _ (ppcompose_left_phomotopy !ppcompose_left_ppcompose_right⁻¹* ⬝*
!ppcompose_left_pcompose) ⬝* !passoc ⬝* pwhisker_left _ !ppcompose_left_ppcompose_right⁻¹* ⬝*
!passoc⁻¹*,
refine _ ⬝v* !smash_adjoint_pmap_natural_lm,
refine !smash_adjoint_pmap_natural_right
end
definition smash_assoc_natural (f : A →* A') (g : B →* B') (h : C →* C') :
psquare (smash_assoc A B C) (smash_assoc A' B' C') (f ∧→ (g ∧→ h)) ((f ∧→ g) ∧→ h) :=
begin
refine !smash_assoc_elim_inv_natural_right_pt ⬝* _,
refine pap !smash_assoc_elim_equiv⁻¹ᵉ* (!pcompose_pid ⬝* !pid_pcompose⁻¹*) ⬝* _,
rexact phomotopy_of_eq ((smash_assoc_elim_natural_left _ f g h)⁻¹ʰ* !pid)⁻¹
end
/- Corollary 2: smashing with a suspension -/
definition smash_psusp_elim_equiv (A B X : Type*) :
ppmap (A ∧ psusp B) X ≃* ppmap (psusp (A ∧ B)) X :=
calc
ppmap (A ∧ psusp B) X ≃* ppmap (psusp B) (ppmap A X) : smash_adjoint_pmap A (psusp B) X
... ≃* ppmap B (Ω (ppmap A X)) : psusp_adjoint_loop' B (ppmap A X)
... ≃* ppmap B (ppmap A (Ω X)) : pequiv_ppcompose_left (loop_ppmap_commute A X)
... ≃* ppmap (A ∧ B) (Ω X) : smash_adjoint_pmap A B (Ω X)
... ≃* ppmap (psusp (A ∧ B)) X : psusp_adjoint_loop' (A ∧ B) X
definition smash_psusp_elim_natural_right (A B : Type*) (f : X →* X') :
psquare (smash_psusp_elim_equiv A B X) (smash_psusp_elim_equiv A B X')
(ppcompose_left f) (ppcompose_left f) :=
smash_adjoint_pmap_natural_right f ⬝h*
psusp_adjoint_loop_natural_right (ppcompose_left f) ⬝h*
ppcompose_left_psquare (loop_pmap_commute_natural_right A f) ⬝h*
(smash_adjoint_pmap_natural_right (Ω→ f))⁻¹ʰ* ⬝h*
(psusp_adjoint_loop_natural_right f)⁻¹ʰ*
definition smash_psusp_elim_natural_left (X : Type*) (f : A' →* A) (g : B' →* B) :
psquare (smash_psusp_elim_equiv A B X) (smash_psusp_elim_equiv A' B' X)
(ppcompose_right (f ∧→ psusp_functor g)) (ppcompose_right (psusp_functor (f ∧→ g))) :=
begin
refine smash_adjoint_pmap_natural_lm X f (psusp_functor g) ⬝h*
_ ⬝h* _ ⬝h*
(smash_adjoint_pmap_natural_lm (Ω X) f g)⁻¹ʰ* ⬝h*
(psusp_adjoint_loop_natural_left (f ∧→ g))⁻¹ʰ*,
rotate 2,
exact !ppcompose_left_ppcompose_right ⬝v* ppcompose_left_psquare (loop_pmap_commute_natural_left X f),
exact psusp_adjoint_loop_natural_left g ⬝v* psusp_adjoint_loop_natural_right (ppcompose_right f)
end
definition smash_psusp (A B : Type*) : A ∧ ⅀ B ≃* ⅀(A ∧ B) :=
begin
fapply pequiv.MK,
{ exact !smash_psusp_elim_equiv⁻¹ᵉ* !pid },
{ exact !smash_psusp_elim_equiv !pid },
{ refine phomotopy_of_eq (!smash_psusp_elim_natural_right⁻¹ʰ* _) ⬝* _,
refine pap !smash_psusp_elim_equiv⁻¹ᵉ* !pcompose_pid ⬝* _,
apply phomotopy_of_eq, apply to_left_inv !smash_psusp_elim_equiv },
{ refine phomotopy_of_eq (!smash_psusp_elim_natural_right _) ⬝* _,
refine pap !smash_psusp_elim_equiv !pcompose_pid ⬝* _,
apply phomotopy_of_eq, apply to_right_inv !smash_psusp_elim_equiv }
end
definition smash_psusp_natural (f : A →* A') (g : B →* B') :
psquare (smash_psusp A B) (smash_psusp A' B') (f ∧→ (psusp_functor g)) (psusp_functor (f ∧→ g)) :=
begin
refine phomotopy_of_eq (!smash_psusp_elim_natural_right⁻¹ʰ* _) ⬝* _,
refine pap !smash_psusp_elim_equiv⁻¹ᵉ* (!pcompose_pid ⬝* !pid_pcompose⁻¹*) ⬝* _,
rexact phomotopy_of_eq ((smash_psusp_elim_natural_left _ f g)⁻¹ʰ* !pid)⁻¹
end
definition smash_iterate_psusp (n : ) (A B : Type*) : A ∧ iterate_psusp n B ≃* iterate_psusp n (A ∧ B) :=
begin
induction n with n e,
{ reflexivity },
{ exact smash_psusp A (iterate_psusp n B) ⬝e* psusp_pequiv e }
end
definition smash_sphere (A : Type*) (n : ) : A ∧ psphere n ≃* iterate_psusp n A :=
smash_pequiv pequiv.rfl (psphere_pequiv_iterate_psusp n) ⬝e*
smash_iterate_psusp n A pbool ⬝e*
iterate_psusp_pequiv n (smash_pbool_pequiv A)
definition sphere_smash_sphere (n m : ) : psphere n ∧ psphere m ≃* psphere (n+m) :=
smash_sphere (psphere n) m ⬝e*
iterate_psusp_pequiv m (psphere_pequiv_iterate_psusp n) ⬝e*
iterate_psusp_iterate_psusp_rev m n pbool ⬝e*
(psphere_pequiv_iterate_psusp (n + m))⁻¹ᵉ*
end smash