Spectral/pointed_pi.hlean
2017-07-08 18:20:43 +01:00

756 lines
33 KiB
Text

/-
Copyright (c) 2016 Ulrik Buchholtz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ulrik Buchholtz, Floris van Doorn
-/
import homotopy.connectedness types.pointed2 .move_to_lib .pointed
open eq pointed equiv sigma is_equiv trunc option
/-
In this file we define dependent pointed maps and properties of them.
Using this, we give the truncation level
of the type of pointed maps, giving the connectivity of
the domain and the truncation level of the codomain.
This is is_trunc_pmap_of_is_conn at the end.
We also prove other properties about pointed (dependent maps), like the fact that
(Π*a, F a) → (Π*a, X a) → (Π*a, B a)
is a fibration sequence if (F a) → (X a) → B a) is.
-/
namespace pointed
definition pointed_respect_pt [instance] [constructor] {A B : Type*} (f : A →* B) :
pointed (f pt = pt) :=
pointed.mk (respect_pt f)
definition ppi_gen_of_phomotopy [constructor] {A B : Type*} {f g : A →* B} (h : f ~* g) :
ppi_gen (λx, f x = g x) (respect_pt f ⬝ (respect_pt g)⁻¹) :=
h
abbreviation ppi_resp_pt [unfold 3] := @ppi.resp_pt
definition ppi_const [constructor] {A : Type*} (P : A → Type*) : ppi P :=
ppi.mk (λa, pt) idp
definition pointed_ppi [instance] [constructor] {A : Type*}
(P : A → Type*) : pointed (ppi P) :=
pointed.mk (ppi_const P)
definition pppi [constructor] {A : Type*} (P : A → Type*) : Type* :=
pointed.mk' (ppi P)
notation `Π*` binders `, ` r:(scoped P, pppi P) := r
definition ppi_homotopy {A : Type*} {P : A → Type} {x : P pt} (f g : ppi_gen P x) : Type :=
ppi_gen (λa, f a = g a) (ppi_gen.resp_pt f ⬝ (ppi_gen.resp_pt g)⁻¹)
variables {A : Type*} {P Q R : A → Type*} {f g h : Π*a, P a}
{B : A → Type} {x₀ : B pt} {k l m : ppi_gen B x₀}
infix ` ~~* `:50 := ppi_homotopy
definition ppi_homotopy.mk [constructor] [reducible] (h : k ~ l)
(p : h pt ⬝ ppi_gen.resp_pt l = ppi_gen.resp_pt k) : k ~~* l :=
ppi_gen.mk h (eq_con_inv_of_con_eq p)
definition ppi_to_homotopy [coercion] [unfold 6] [reducible] (p : k ~~* l) : Πa, k a = l a := p
definition ppi_to_homotopy_pt [unfold 6] [reducible] (p : k ~~* l) :
p pt ⬝ ppi_gen.resp_pt l = ppi_gen.resp_pt k :=
con_eq_of_eq_con_inv (ppi_gen.resp_pt p)
variable (k)
protected definition ppi_homotopy.refl : k ~~* k :=
ppi_homotopy.mk homotopy.rfl !idp_con
variable {k}
protected definition ppi_homotopy.rfl [refl] : k ~~* k :=
ppi_homotopy.refl k
protected definition ppi_homotopy.symm [symm] (p : k ~~* l) : l ~~* k :=
ppi_homotopy.mk p⁻¹ʰᵗʸ (inv_con_eq_of_eq_con (ppi_to_homotopy_pt p)⁻¹)
protected definition ppi_homotopy.trans [trans] (p : k ~~* l) (q : l ~~* m) : k ~~* m :=
ppi_homotopy.mk (λa, p a ⬝ q a) (!con.assoc ⬝ whisker_left (p pt) (ppi_to_homotopy_pt q) ⬝ ppi_to_homotopy_pt p)
infix ` ⬝*' `:75 := ppi_homotopy.trans
postfix `⁻¹*'`:(max+1) := ppi_homotopy.symm
definition ppi_trans_refl (p : k ~~* l) : p ⬝*' ppi_homotopy.refl l = p :=
begin
unfold ppi_homotopy.trans,
induction A with A a₀,
induction k with k k₀, induction l with l l₀, induction p with p p₀, esimp at p, induction l₀, esimp at p₀, induction p₀, reflexivity,
end
definition ppi_equiv_pmap [constructor] (A B : Type*) : (Π*(a : A), B) ≃ (A →* B) :=
begin
fapply equiv.MK,
{ intro k, induction k with k p, exact pmap.mk k p },
{ intro k, induction k with k p, exact ppi.mk k p },
{ intro k, induction k with k p, reflexivity },
{ intro k, induction k with k p, reflexivity }
end
definition pppi_pequiv_ppmap [constructor] (A B : Type*) : (Π*(a : A), B) ≃* ppmap A B :=
pequiv_of_equiv (ppi_equiv_pmap A B) idp
protected definition ppi_gen.sigma_char [constructor] {A : Type*} (B : A → Type) (b₀ : B pt) :
ppi_gen B b₀ ≃ Σ(k : Πa, B a), k pt = b₀ :=
begin
fapply equiv.MK: intro x,
{ constructor, exact ppi_gen.resp_pt x },
{ induction x, constructor, assumption },
{ induction x, reflexivity },
{ induction x, reflexivity }
end
definition ppi.sigma_char [constructor] {A : Type*} (B : A → Type*)
: (Π*(a : A), B a) ≃ Σ(k : (Π (a : A), B a)), k pt = pt :=
begin
fapply equiv.MK : intros k,
{ exact ⟨ k , ppi_resp_pt k ⟩ },
all_goals cases k with k p,
{ exact ppi.mk k p },
all_goals reflexivity
end
variables (k l)
definition ppi_homotopy.rec' [recursor] (B : k ~~* l → Type)
(H : Π(h : k ~ l) (p : h pt ⬝ ppi_gen.resp_pt l = ppi_gen.resp_pt k), B (ppi_homotopy.mk h p))
(h : k ~~* l) : B h :=
begin
induction h with h p,
refine transport (λp, B (ppi_gen.mk h p)) _ (H h (con_eq_of_eq_con_inv p)),
apply to_left_inv !eq_con_inv_equiv_con_eq p
end
definition ppi_homotopy.sigma_char [constructor]
: (k ~~* l) ≃ Σ(p : k ~ l), p pt ⬝ ppi_gen.resp_pt l = ppi_gen.resp_pt k :=
begin
fapply equiv.MK : intros h,
{ exact ⟨h , ppi_to_homotopy_pt h⟩ },
{ cases h with h p, exact ppi_homotopy.mk h p },
{ cases h with h p, exact ap (dpair h) (to_right_inv !eq_con_inv_equiv_con_eq p) },
{ induction h using ppi_homotopy.rec' with h p,
exact ap (ppi_homotopy.mk h) (to_right_inv !eq_con_inv_equiv_con_eq p) }
end
-- the same as pmap_eq_equiv
definition ppi_eq_equiv : (k = l) ≃ (k ~~* l) :=
calc (k = l) ≃ ppi_gen.sigma_char B x₀ k = ppi_gen.sigma_char B x₀ l
: eq_equiv_fn_eq (ppi_gen.sigma_char B x₀) k l
... ≃ Σ(p : k = l),
pathover (λh, h pt = x₀) (ppi_gen.resp_pt k) p (ppi_gen.resp_pt l)
: sigma_eq_equiv _ _
... ≃ Σ(p : k = l),
ppi_gen.resp_pt k = ap (λh, h pt) p ⬝ ppi_gen.resp_pt l
: sigma_equiv_sigma_right
(λp, eq_pathover_equiv_Fl p (ppi_gen.resp_pt k) (ppi_gen.resp_pt l))
... ≃ Σ(p : k = l),
ppi_gen.resp_pt k = apd10 p pt ⬝ ppi_gen.resp_pt l
: sigma_equiv_sigma_right
(λp, equiv_eq_closed_right _ (whisker_right _ (ap_eq_apd10 p _)))
... ≃ Σ(p : k ~ l), ppi_gen.resp_pt k = p pt ⬝ ppi_gen.resp_pt l
: sigma_equiv_sigma_left' eq_equiv_homotopy
... ≃ Σ(p : k ~ l), p pt ⬝ ppi_gen.resp_pt l = ppi_gen.resp_pt k
: sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
... ≃ (k ~~* l) : ppi_homotopy.sigma_char k l
-- the same as pmap_eq
variables {k l}
definition ppi_eq (h : k ~~* l) : k = l :=
(ppi_eq_equiv k l)⁻¹ᵉ h
definition eq_of_ppi_homotopy (h : k ~~* l) : k = l := ppi_eq h
definition ppi_homotopy_of_eq (p : k = l) : k ~~* l := ppi_eq_equiv k l p
definition ppi_homotopy_of_eq_of_ppi_homotopy (h : k ~~* l) :
ppi_homotopy_of_eq (eq_of_ppi_homotopy h) = h :=
to_right_inv (ppi_eq_equiv k l) h
variable (k)
definition eq_ppi_homotopy_refl_ppi_homotopy_of_eq_refl : ppi_homotopy.refl k = ppi_homotopy_of_eq (refl k) :=
begin
induction k with k p,
induction p, reflexivity
end
definition ppi_homotopy_of_eq_refl
: ppi_homotopy.refl k = ppi_homotopy_of_eq (refl k)
:=
begin
induction k with k k₀, induction k₀, reflexivity,
end
definition ppi_homotopy_of_eq_con {A : Type*} {B : A → Type*} {f g h : Π* (a : A), B a} (p : f = g) (q : g = h) :
ppi_homotopy_of_eq (p ⬝ q) = ppi_homotopy_of_eq p ⬝*' ppi_homotopy_of_eq q :=
begin induction q, induction p,
fapply eq_of_ppi_homotopy,
rewrite [!idp_con],
refine transport (λ x, x ~~* x ⬝*' x) !ppi_homotopy_of_eq_refl _,
fapply ppi_homotopy_of_eq,
refine (ppi_trans_refl (ppi_homotopy.refl f))⁻¹
end
-- definition ppi_homotopy_of_eq_of_ppi_homotopy
definition ppi_homotopy_mk_ppmap [constructor]
{A : Type*} {X : A → Type*} {Y : Π (a : A), X a → Type*}
{f g : Π* (a : A), Π*(x : (X a)), (Y a x)}
(p : Πa, f a ~~* g a)
(q : p pt ⬝*' ppi_homotopy_of_eq (ppi_resp_pt g) = ppi_homotopy_of_eq (ppi_resp_pt f))
: f ~~* g :=
begin
apply ppi_homotopy.mk (λa, eq_of_ppi_homotopy (p a)),
apply eq_of_fn_eq_fn (ppi_eq_equiv _ _),
refine !ppi_homotopy_of_eq_con ⬝ _,
repeat exact sorry
-- refine !ppi_homotopy_of_eq_of_ppi_homotopy ◾** idp ⬝ q,
end
variable {k}
definition ppi_homotopy_rec_on_eq [recursor] {k' : ppi_gen B x₀}
{Q : (k ~~* k') → Type} (p : k ~~* k') (H : Π(q : k = k'), Q (ppi_homotopy_of_eq q)) : Q p :=
ppi_homotopy_of_eq_of_ppi_homotopy p ▸ H (eq_of_ppi_homotopy p)
definition ppi_homotopy_rec_on_idp [recursor]
{Q : Π {k' : ppi_gen B x₀}, (k ~~* k') → Type}
(q : Q (ppi_homotopy.refl k)) {k' : ppi_gen B x₀} (H : k ~~* k') : Q H :=
begin
induction H using ppi_homotopy_rec_on_eq with t,
induction t, exact eq_ppi_homotopy_refl_ppi_homotopy_of_eq_refl k ▸ q,
end
variables (k l)
definition ppi_loop_equiv : (k = k) ≃ Π*(a : A), Ω (pType.mk (B a) (k a)) :=
begin
induction k with k p, induction p,
exact ppi_eq_equiv (ppi_gen.mk k idp) (ppi_gen.mk k idp)
end
variables {k l}
-- definition eq_of_ppi_homotopy (h : k ~~* l) : k = l :=
-- (ppi_eq_equiv k l)⁻¹ᵉ h
definition ppi_loop_pequiv : Ω (Π*(a : A), P a) ≃* Π*(a : A), Ω (P a) :=
pequiv_of_equiv (ppi_loop_equiv pt) idp
definition pmap_compose_ppi [constructor] (g : Π(a : A), ppmap (P a) (Q a))
(f : Π*(a : A), P a) : Π*(a : A), Q a :=
proof ppi.mk (λa, g a (f a)) (ap (g pt) (ppi.resp_pt f) ⬝ respect_pt (g pt)) qed
definition pmap_compose_ppi_const_right (g : Π(a : A), ppmap (P a) (Q a)) :
pmap_compose_ppi g (ppi_const P) ~~* ppi_const Q :=
proof ppi_homotopy.mk (λa, respect_pt (g a)) !idp_con⁻¹ qed
definition pmap_compose_ppi_const_left (f : Π*(a : A), P a) :
pmap_compose_ppi (λa, pconst (P a) (Q a)) f ~~* ppi_const Q :=
ppi_homotopy.mk homotopy.rfl !ap_constant⁻¹
definition ppi_compose_left [constructor] (g : Π(a : A), ppmap (P a) (Q a)) :
(Π*(a : A), P a) →* Π*(a : A), Q a :=
pmap.mk (pmap_compose_ppi g) (ppi_eq (pmap_compose_ppi_const_right g))
-- ppi_compose_left is associative in the following sense.
definition ppi_assoc_compose_left {A : Type*} {B C D : A → Type*}
(f : Π (a : A), B a →* C a) (g : Π (a : A), C a →* D a)
: (ppi_compose_left g ∘* ppi_compose_left f) ~* ppi_compose_left (λ a, g a ∘* f a) :=
begin
fapply phomotopy.mk,
intro h, fapply eq_of_ppi_homotopy,
fapply ppi_homotopy.mk,
intro a, reflexivity,
refine !idp_con ⬝ _,
-- esimp,
repeat exact sorry,
end /- TODO FOR SSS -/
definition psquare_loop_ppi_compose_left {A : Type*} {X Y : A → Type*} (f : Π (a : A), X a →* Y a) :
psquare
(Ω→ (ppi_compose_left f))
(ppi_compose_left (λ a, Ω→ (f a)))
(ppi_loop_pequiv)
(ppi_loop_pequiv)
:=
begin
fapply psquare_of_phomotopy,
fapply phomotopy.mk, intro g,
fapply eq_of_ppi_homotopy, fapply ppi_homotopy.mk, intro a,
repeat exact sorry
end /- TODO FOR SSS -/
definition psquare_of_ppi_compose_left {A : Type*} {B C D E : A → Type*}
{ftop : Π (a : A), B a →* C a} {fbot : Π (a : A), D a →* E a}
{fleft : Π (a : A), B a →* D a} {fright : Π (a : A), C a →* E a}
(psq : Π (a :A), psquare (ftop a) (fbot a) (fleft a) (fright a))
: psquare
(ppi_compose_left ftop)
(ppi_compose_left fbot)
(ppi_compose_left fleft)
(ppi_compose_left fright)
:=
begin
refine (ppi_assoc_compose_left ftop fright) ⬝* _ ⬝* (ppi_assoc_compose_left fleft fbot)⁻¹*,
refine eq_of_homotopy (λ a, eq_of_phomotopy (psq a)) ▸ phomotopy.rfl,
-- the last step is probably an unnecessary application of function extensionality.
end
definition pmap_compose_ppi_phomotopy_left [constructor] {g g' : Π(a : A), ppmap (P a) (Q a)}
(f : Π*(a : A), P a) (p : Πa, g a ~* g' a) : pmap_compose_ppi g f ~~* pmap_compose_ppi g' f :=
ppi_homotopy.mk (λa, p a (f a))
abstract !con.assoc⁻¹ ⬝ whisker_right _ !ap_con_eq_con_ap⁻¹ ⬝ !con.assoc ⬝
whisker_left _ (to_homotopy_pt (p pt)) end
definition pmap_compose_ppi_pid_left [constructor]
(f : Π*(a : A), P a) : pmap_compose_ppi (λa, pid (P a)) f ~~* f :=
ppi_homotopy.mk homotopy.rfl idp
definition pmap_compose_ppi_pcompose [constructor] (h : Π(a : A), ppmap (Q a) (R a))
(g : Π(a : A), ppmap (P a) (Q a)) :
pmap_compose_ppi (λa, h a ∘* g a) f ~~* pmap_compose_ppi h (pmap_compose_ppi g f) :=
ppi_homotopy.mk homotopy.rfl
abstract !idp_con ⬝ whisker_right _ (!ap_con ⬝ whisker_right _ !ap_compose'⁻¹) ⬝ !con.assoc end
definition ppi_pequiv_right [constructor] (g : Π(a : A), P a ≃* Q a) :
(Π*(a : A), P a) ≃* Π*(a : A), Q a :=
begin
apply pequiv_of_pmap (ppi_compose_left g),
apply adjointify _ (ppi_compose_left (λa, (g a)⁻¹ᵉ*)),
{ intro f, apply ppi_eq,
refine !pmap_compose_ppi_pcompose⁻¹*' ⬝*' _,
refine pmap_compose_ppi_phomotopy_left _ (λa, !pright_inv) ⬝*' _,
apply pmap_compose_ppi_pid_left },
{ intro f, apply ppi_eq,
refine !pmap_compose_ppi_pcompose⁻¹*' ⬝*' _,
refine pmap_compose_ppi_phomotopy_left _ (λa, !pleft_inv) ⬝*' _,
apply pmap_compose_ppi_pid_left }
end
definition psigma_gen [constructor] {A : Type*} (P : A → Type) (x : P pt) : Type* :=
pointed.MK (Σa, P a) ⟨pt, x⟩
end pointed
open fiber function
namespace pointed
variables {A B C : Type*}
-- TODO: replace in types.fiber
definition pfiber.sigma_char' (f : A →* B) :
pfiber f ≃* psigma_gen (λa, f a = pt) (respect_pt f) :=
pequiv_of_equiv (fiber.sigma_char f pt) idp
/- the pointed type of unpointed (nondependent) maps -/
definition pumap [constructor] (A : Type) (B : Type*) : Type* :=
pointed.MK (A → B) (const A pt)
/- the pointed type of unpointed dependent maps -/
definition pupi [constructor] {A : Type} (B : A → Type*) : Type* :=
pointed.MK (Πa, B a) (λa, pt)
notation `Πᵘ*` binders `, ` r:(scoped P, pupi P) := r
infix ` →ᵘ* `:30 := pumap
definition ppmap.sigma_char [constructor] (A B : Type*) :
ppmap A B ≃* @psigma_gen (A →ᵘ* B) (λf, f pt = pt) idp :=
pequiv_of_equiv pmap.sigma_char idp
definition pppi.sigma_char [constructor] {A : Type*} (B : A → Type*) :
(Π*(a : A), B a) ≃* @psigma_gen (Πᵘ*a, B a) (λf, f pt = pt) idp :=
proof pequiv_of_equiv !ppi.sigma_char idp qed
definition psigma_gen_pequiv_psigma_gen [constructor] {A A' : Type*} {B : A → Type}
{B' : A' → Type} {b : B pt} {b' : B' pt} (f : A ≃* A')
(g : Πa, B a ≃ B' (f a)) (p : g pt b =[respect_pt f] b') : psigma_gen B b ≃* psigma_gen B' b' :=
pequiv_of_equiv (sigma_equiv_sigma f g) (sigma_eq (respect_pt f) p)
definition psigma_gen_pequiv_psigma_gen_left [constructor] {A A' : Type*} {B : A' → Type}
{b : B pt} (f : A ≃* A') {b' : B (f pt)} (q : b' =[respect_pt f] b) :
psigma_gen (B ∘ f) b' ≃* psigma_gen B b :=
psigma_gen_pequiv_psigma_gen f (λa, erfl) q
definition psigma_gen_pequiv_psigma_gen_right [constructor] {A : Type*} {B B' : A → Type}
{b : B pt} {b' : B' pt} (f : Πa, B a ≃ B' a) (p : f pt b = b') :
psigma_gen B b ≃* psigma_gen B' b' :=
psigma_gen_pequiv_psigma_gen pequiv.rfl f (pathover_idp_of_eq p)
definition psigma_gen_pequiv_psigma_gen_basepoint [constructor] {A : Type*} {B : A → Type}
{b b' : B pt} (p : b = b') : psigma_gen B b ≃* psigma_gen B b' :=
psigma_gen_pequiv_psigma_gen_right (λa, erfl) p
definition ppi_gen_functor_right [constructor] {A : Type*} {B B' : A → Type}
{b : B pt} {b' : B' pt} (f : Πa, B a → B' a) (p : f pt b = b') (g : ppi_gen B b)
: ppi_gen B' b' :=
ppi_gen.mk (λa, f a (g a)) (ap (f pt) (ppi_gen.resp_pt g) ⬝ p)
definition ppi_gen_functor_right_compose [constructor] {A : Type*} {B₁ B₂ B₃ : A → Type}
{b₁ : B₁ pt} {b₂ : B₂ pt} {b₃ : B₃ pt} (f₂ : Πa, B₂ a → B₃ a) (p₂ : f₂ pt b₂ = b₃)
(f₁ : Πa, B₁ a → B₂ a) (p₁ : f₁ pt b₁ = b₂)
(g : ppi_gen B₁ b₁) : ppi_gen_functor_right (λa, f₂ a ∘ f₁ a) (ap (f₂ pt) p₁ ⬝ p₂) g ~~*
ppi_gen_functor_right f₂ p₂ (ppi_gen_functor_right f₁ p₁ g) :=
begin
fapply ppi_homotopy.mk,
{ reflexivity },
{ induction p₁, induction p₂, exact !idp_con ⬝ !ap_compose⁻¹ }
end
definition ppi_gen_functor_right_id [constructor] {A : Type*} {B : A → Type}
{b : B pt} (g : ppi_gen B b) : ppi_gen_functor_right (λa, id) idp g ~~* g :=
begin
fapply ppi_homotopy.mk,
{ reflexivity },
{ reflexivity }
end
definition ppi_gen_functor_right_homotopy [constructor] {A : Type*} {B B' : A → Type}
{b : B pt} {b' : B' pt} {f f' : Πa, B a → B' a} {p : f pt b = b'} {p' : f' pt b = b'}
(h : f ~2 f') (q : h pt b ⬝ p' = p) (g : ppi_gen B b) :
ppi_gen_functor_right f p g ~~* ppi_gen_functor_right f' p' g :=
begin
fapply ppi_homotopy.mk,
{ exact λa, h a (g a) },
{ induction g with g r, induction r, induction q,
exact whisker_left _ !idp_con ⬝ !idp_con⁻¹ }
end
definition ppi_gen_equiv_ppi_gen_right [constructor] {A : Type*} {B B' : A → Type}
{b : B pt} {b' : B' pt} (f : Πa, B a ≃ B' a) (p : f pt b = b') :
ppi_gen B b ≃ ppi_gen B' b' :=
equiv.MK (ppi_gen_functor_right f p) (ppi_gen_functor_right (λa, (f a)⁻¹ᵉ) (inv_eq_of_eq p⁻¹))
abstract begin
intro g, apply ppi_eq,
refine !ppi_gen_functor_right_compose⁻¹*' ⬝*' _,
refine ppi_gen_functor_right_homotopy (λa, to_right_inv (f a)) _ g ⬝*'
!ppi_gen_functor_right_id, induction p, exact adj (f pt) b ⬝ ap02 (f pt) !idp_con⁻¹
end end
abstract begin
intro g, apply ppi_eq,
refine !ppi_gen_functor_right_compose⁻¹*' ⬝*' _,
refine ppi_gen_functor_right_homotopy (λa, to_left_inv (f a)) _ g ⬝*'
!ppi_gen_functor_right_id, induction p, exact (!idp_con ⬝ !idp_con)⁻¹,
end end
definition ppi_gen_equiv_ppi_gen_basepoint [constructor] {A : Type*} {B : A → Type} {b b' : B pt}
(p : b = b') : ppi_gen B b ≃ ppi_gen B b' :=
ppi_gen_equiv_ppi_gen_right (λa, erfl) p
open sigma.ops
definition psigma_gen_pi_pequiv_pupi_psigma_gen [constructor] {A : Type*} {B : A → Type*}
(C : Πa, B a → Type) (c : Πa, C a pt) :
@psigma_gen (Πᵘ*a, B a) (λf, Πa, C a (f a)) c ≃* Πᵘ*a, psigma_gen (C a) (c a) :=
pequiv_of_equiv sigma_pi_equiv_pi_sigma idp
definition pupi_psigma_gen_pequiv_psigma_gen_pi [constructor] {A : Type*} {B : A → Type*}
(C : Πa, B a → Type) (c : Πa, C a pt) :
(Πᵘ*a, psigma_gen (C a) (c a)) ≃* @psigma_gen (Πᵘ*a, B a) (λf, Πa, C a (f a)) c :=
pequiv_of_equiv sigma_pi_equiv_pi_sigma⁻¹ᵉ idp
definition psigma_gen_assoc [constructor] {A : Type*} {B : A → Type} (C : Πa, B a → Type)
(b₀ : B pt) (c₀ : C pt b₀) :
psigma_gen (λa, Σb, C a b) ⟨b₀, c₀⟩ ≃* @psigma_gen (psigma_gen B b₀) (λv, C v.1 v.2) c₀ :=
pequiv_of_equiv !sigma_assoc_equiv idp
definition psigma_gen_swap [constructor] {A : Type*} {B B' : A → Type}
(C : Π⦃a⦄, B a → B' a → Type) (b₀ : B pt) (b₀' : B' pt) (c₀ : C b₀ b₀') :
@psigma_gen (psigma_gen B b₀ ) (λv, Σb', C v.2 b') ⟨b₀', c₀⟩ ≃*
@psigma_gen (psigma_gen B' b₀') (λv, Σb , C b v.2) ⟨b₀ , c₀⟩ :=
!psigma_gen_assoc⁻¹ᵉ* ⬝e* psigma_gen_pequiv_psigma_gen_right (λa, !sigma_comm_equiv) idp ⬝e*
!psigma_gen_assoc
definition ppi_psigma.{u v w} {A : pType.{u}} {B : A → pType.{v}} (C : Πa, B a → Type.{w})
(c : Πa, C a pt) : (Π*(a : A), (psigma_gen (C a) (c a))) ≃*
psigma_gen (λ(f : Π*(a : A), B a), ppi_gen (λa, C a (f a))
(transport (C pt) (ppi.resp_pt f)⁻¹ (c pt))) (ppi_const _) :=
proof
calc (Π*(a : A), psigma_gen (C a) (c a))
≃* @psigma_gen (Πᵘ*a, psigma_gen (C a) (c a)) (λf, f pt = pt) idp : pppi.sigma_char
... ≃* @psigma_gen (@psigma_gen (Πᵘ*a, B a) (λf, Πa, C a (f a)) c)
(λv, Σ(p : v.1 pt = pt), v.2 pt =[p] c pt) ⟨idp, idpo⟩ :
by exact psigma_gen_pequiv_psigma_gen (pupi_psigma_gen_pequiv_psigma_gen_pi C c)
(λf, sigma_eq_equiv _ _) idpo
... ≃* @psigma_gen (@psigma_gen (Πᵘ*a, B a) (λf, f pt = pt) idp)
(λv, Σ(g : Πa, C a (v.1 a)), g pt =[v.2] c pt) ⟨c, idpo⟩ :
by apply psigma_gen_swap
... ≃* psigma_gen (λ(f : Π*(a : A), B a), ppi_gen (λa, C a (f a))
(transport (C pt) (ppi.resp_pt f)⁻¹ (c pt)))
(ppi_const _) :
by exact (psigma_gen_pequiv_psigma_gen (pppi.sigma_char B)
(λf, !ppi_gen.sigma_char ⬝e sigma_equiv_sigma_right (λg, !pathover_equiv_eq_tr⁻¹ᵉ))
idpo)⁻¹ᵉ*
qed
definition ppmap_psigma {A B : Type*} (C : B → Type) (c : C pt) :
ppmap A (psigma_gen C c) ≃*
psigma_gen (λ(f : ppmap A B), ppi_gen (C ∘ f) (transport C (respect_pt f)⁻¹ c))
(ppi_const _) :=
!pppi_pequiv_ppmap⁻¹ᵉ* ⬝e* !ppi_psigma ⬝e*
sorry
-- psigma_gen_pequiv_psigma_gen (pppi_pequiv_ppmap A B) (λf, begin esimp, exact ppi_gen_equiv_ppi_gen_right (λa, _) _ end) _
definition pfiber_ppcompose_left (f : B →* C) :
pfiber (@ppcompose_left A B C f) ≃* ppmap A (pfiber f) :=
calc
pfiber (@ppcompose_left A B C f) ≃*
psigma_gen (λ(g : ppmap A B), f ∘* g = pconst A C)
proof (eq_of_phomotopy (pcompose_pconst f)) qed :
by exact !pfiber.sigma_char'
... ≃* psigma_gen (λ(g : ppmap A B), f ∘* g ~* pconst A C) proof (pcompose_pconst f) qed :
by exact psigma_gen_pequiv_psigma_gen_right (λa, !pmap_eq_equiv)
!phomotopy_of_eq_of_phomotopy
... ≃* psigma_gen (λ(g : ppmap A B), ppi_gen (λa, f (g a) = pt)
(transport (λb, f b = pt) (respect_pt g)⁻¹ (respect_pt f)))
(ppi_const _) :
begin
refine psigma_gen_pequiv_psigma_gen_right
(λg, ppi_gen_equiv_ppi_gen_basepoint (_ ⬝ !eq_transport_Fl⁻¹)) _,
intro g, refine !con_idp ⬝ _, apply whisker_right,
exact ap02 f !inv_inv⁻¹ ⬝ !ap_inv,
apply ppi_eq, fapply ppi_homotopy.mk,
intro x, reflexivity,
refine !idp_con ⬝ _, symmetry, refine !ap_id ◾ !idp_con ⬝ _, apply con.right_inv
end
... ≃* ppmap A (psigma_gen (λb, f b = pt) (respect_pt f)) :
by exact (ppmap_psigma _ _)⁻¹ᵉ*
... ≃* ppmap A (pfiber f) : by exact pequiv_ppcompose_left !pfiber.sigma_char'⁻¹ᵉ*
definition pfiber_ppi_compose_left {B C : A → Type*} (f : Πa, B a →* C a) :
pfiber (ppi_compose_left f) ≃* Π*(a : A), pfiber (f a) :=
calc
pfiber (ppi_compose_left f) ≃*
psigma_gen (λ(g : Π*(a : A), B a), pmap_compose_ppi f g = ppi_const C)
proof (ppi_eq (pmap_compose_ppi_const_right f)) qed : by exact !pfiber.sigma_char'
... ≃* psigma_gen (λ(g : Π*(a : A), B a), pmap_compose_ppi f g ~~* ppi_const C)
proof (pmap_compose_ppi_const_right f) qed :
by exact psigma_gen_pequiv_psigma_gen_right (λa, !ppi_eq_equiv)
!ppi_homotopy_of_eq_of_ppi_homotopy
... ≃* psigma_gen (λ(g : Π*(a : A), B a), ppi_gen (λa, f a (g a) = pt)
(transport (λb, f pt b = pt) (ppi.resp_pt g)⁻¹ (respect_pt (f pt))))
(ppi_const _) :
begin
refine psigma_gen_pequiv_psigma_gen_right
(λg, ppi_gen_equiv_ppi_gen_basepoint (_ ⬝ !eq_transport_Fl⁻¹)) _,
intro g, refine !con_idp ⬝ _, apply whisker_right,
exact ap02 (f pt) !inv_inv⁻¹ ⬝ !ap_inv,
apply ppi_eq, fapply ppi_homotopy.mk,
intro x, reflexivity,
refine !idp_con ⬝ _, symmetry, refine !ap_id ◾ !idp_con ⬝ _, apply con.right_inv
end
... ≃* Π*(a : A), (psigma_gen (λb, f a b = pt) (respect_pt (f a))) :
by exact (ppi_psigma _ _)⁻¹ᵉ*
... ≃* Π*(a : A), pfiber (f a) : by exact ppi_pequiv_right (λa, !pfiber.sigma_char'⁻¹ᵉ*)
-- definition pppi_ppmap {A C : Type*} {B : A → Type*} :
-- ppmap (/- dependent smash of B -/) C ≃* Π*(a : A), ppmap (B a) C :=
definition ppi_add_point_over {A : Type} (B : A → Type*) :
(Π*a, add_point_over B a) ≃ Πa, B a :=
begin
fapply equiv.MK,
{ intro f a, exact f (some a) },
{ intro f, fconstructor,
intro a, cases a, exact pt, exact f a,
reflexivity },
{ intro f, reflexivity },
{ intro f, cases f with f p, apply ppi_eq, fapply ppi_homotopy.mk,
{ intro a, cases a, exact p⁻¹, reflexivity },
{ exact con.left_inv p }},
end
definition pppi_add_point_over {A : Type} (B : A → Type*) :
(Π*a, add_point_over B a) ≃* Πᵘ*a, B a :=
pequiv_of_equiv (ppi_add_point_over B) idp
definition ppmap_add_point {A : Type} (B : Type*) :
ppmap A₊ B ≃* A →ᵘ* B :=
pequiv_of_equiv (pmap_equiv_left A B) idp
-- TODO: homotopy_of_eq and apd10 should be the same
-- TODO: there is also apd10_eq_of_homotopy in both pi and eq(?)
/- stuff about the pointed type of unpointed maps (dependent and non-dependent) -/
definition sigma_pumap {A : Type} (B : A → Type) (C : Type*) :
((Σa, B a) →ᵘ* C) ≃* Πᵘ*a, B a →ᵘ* C :=
pequiv_of_equiv (equiv_sigma_rec _)⁻¹ᵉ idp
definition loop_pupi [constructor] {A : Type} (B : A → Type*) : Ω (Πᵘ*a, B a) ≃* Πᵘ*a, Ω (B a) :=
pequiv_of_equiv eq_equiv_homotopy idp
definition phomotopy_mk_pupi [constructor] {A : Type*} {B : Type} {C : B → Type*}
{f g : A →* (Πᵘ*b, C b)} (p : f ~2 g)
(q : p pt ⬝hty apd10 (respect_pt g) ~ apd10 (respect_pt f)) : f ~* g :=
begin
apply phomotopy.mk (λa, eq_of_homotopy (p a)),
apply eq_of_fn_eq_fn eq_equiv_homotopy,
apply eq_of_homotopy, intro b,
refine !apd10_con ⬝ _,
refine whisker_right _ !pi.apd10_eq_of_homotopy ⬝ q b
end
definition pupi_functor [constructor] {A A' : Type} {B : A → Type*} {B' : A' → Type*}
(f : A' → A) (g : Πa, B (f a) →* B' a) : (Πᵘ*a, B a) →* (Πᵘ*a', B' a') :=
pmap.mk (λh a, g a (h (f a))) (eq_of_homotopy (λa, respect_pt (g a)))
definition pupi_functor_compose {A A' A'' : Type}
{B : A → Type*} {B' : A' → Type*} {B'' : A'' → Type*} (f : A'' → A') (f' : A' → A)
(g' : Πa, B' (f a) →* B'' a) (g : Πa, B (f' a) →* B' a) :
pupi_functor (f' ∘ f) (λa, g' a ∘* g (f a)) ~* pupi_functor f g' ∘* pupi_functor f' g :=
begin
fapply phomotopy_mk_pupi,
{ intro h a, reflexivity },
{ intro a, refine !idp_con ⬝ _, refine !apd10_con ⬝ _ ⬝ !pi.apd10_eq_of_homotopy⁻¹, esimp,
refine (!apd10_prepostcompose ⬝ ap02 (g' a) !pi.apd10_eq_of_homotopy) ◾
!pi.apd10_eq_of_homotopy }
end
definition pupi_functor_pid (A : Type) (B : A → Type*) :
pupi_functor id (λa, pid (B a)) ~* pid (Πᵘ*a, B a) :=
begin
fapply phomotopy_mk_pupi,
{ intro h a, reflexivity },
{ intro a, refine !idp_con ⬝ !pi.apd10_eq_of_homotopy⁻¹ }
end
definition pupi_functor_phomotopy {A A' : Type} {B : A → Type*} {B' : A' → Type*}
{f f' : A' → A} {g : Πa, B (f a) →* B' a} {g' : Πa, B (f' a) →* B' a}
(p : f ~ f') (q : Πa, g a ~* g' a ∘* ptransport B (p a)) :
pupi_functor f g ~* pupi_functor f' g' :=
begin
fapply phomotopy_mk_pupi,
{ intro h a, exact q a (h (f a)) ⬝ ap (g' a) (apdt h (p a)) },
{ intro a, esimp,
exact whisker_left _ !pi.apd10_eq_of_homotopy ⬝ !con.assoc ⬝
to_homotopy_pt (q a) ⬝ !pi.apd10_eq_of_homotopy⁻¹ }
end
definition pupi_pequiv [constructor] {A A' : Type} {B : A → Type*} {B' : A' → Type*}
(e : A' ≃ A) (f : Πa, B (e a) ≃* B' a) :
(Πᵘ*a, B a) ≃* (Πᵘ*a', B' a') :=
pequiv.MK (pupi_functor e f)
(pupi_functor e⁻¹ᵉ (λa, ptransport B (right_inv e a) ∘* (f (e⁻¹ᵉ a))⁻¹ᵉ*))
abstract begin
refine !pupi_functor_compose⁻¹* ⬝* pupi_functor_phomotopy (to_right_inv e) _ ⬝*
!pupi_functor_pid,
intro a, exact !pinv_pcompose_cancel_right ⬝* !pid_pcompose⁻¹*
end end
abstract begin
refine !pupi_functor_compose⁻¹* ⬝* pupi_functor_phomotopy (to_left_inv e) _ ⬝*
!pupi_functor_pid,
intro a, refine !passoc⁻¹* ⬝* pinv_right_phomotopy_of_phomotopy _ ⬝* !pid_pcompose⁻¹*,
refine pwhisker_left _ _ ⬝* !ptransport_natural,
exact ptransport_change_eq _ (adj e a) ⬝* ptransport_ap B e (to_left_inv e a)
end end
definition pupi_pequiv_right [constructor] {A : Type} {B B' : A → Type*} (f : Πa, B a ≃* B' a) :
(Πᵘ*a, B a) ≃* (Πᵘ*a, B' a) :=
pupi_pequiv erfl f
definition loop_pumap [constructor] (A : Type) (B : Type*) : Ω (A →ᵘ* B) ≃* A →ᵘ* Ω B :=
loop_pupi (λa, B)
definition phomotopy_mk_pumap [constructor] {A C : Type*} {B : Type} {f g : A →* (B →ᵘ* C)}
(p : f ~2 g) (q : p pt ⬝hty apd10 (respect_pt g) ~ apd10 (respect_pt f))
: f ~* g :=
phomotopy_mk_pupi p q
definition pumap_functor [constructor] {A A' : Type} {B B' : Type*} (f : A' → A) (g : B →* B') :
(A →ᵘ* B) →* (A' →ᵘ* B') :=
pupi_functor f (λa, g)
definition pumap_functor_compose {A A' A'' : Type} {B B' B'' : Type*}
(f : A'' → A') (f' : A' → A) (g' : B' →* B'') (g : B →* B') :
pumap_functor (f' ∘ f) (g' ∘* g) ~* pumap_functor f g' ∘* pumap_functor f' g :=
pupi_functor_compose f f' (λa, g') (λa, g)
definition pumap_functor_pid (A : Type) (B : Type*) :
pumap_functor id (pid B) ~* pid (A →ᵘ* B) :=
pupi_functor_pid A (λa, B)
definition pumap_functor_phomotopy {A A' : Type} {B B' : Type*} {f f' : A' → A} {g g' : B →* B'}
(p : f ~ f') (q : g ~* g') : pumap_functor f g ~* pumap_functor f' g' :=
pupi_functor_phomotopy p (λa, q ⬝* !pcompose_pid⁻¹* ⬝* pwhisker_left _ !ptransport_constant⁻¹*)
definition pumap_pequiv [constructor] {A A' : Type} {B B' : Type*} (e : A ≃ A') (f : B ≃* B') :
(A →ᵘ* B) ≃* (A' →ᵘ* B') :=
pupi_pequiv e⁻¹ᵉ (λa, f)
definition pumap_pequiv_right [constructor] (A : Type) {B B' : Type*} (f : B ≃* B') :
(A →ᵘ* B) ≃* (A →ᵘ* B') :=
pumap_pequiv erfl f
definition pumap_pequiv_left [constructor] {A A' : Type} (B : Type*) (f : A ≃ A') :
(A →ᵘ* B) ≃* (A' →ᵘ* B) :=
pumap_pequiv f pequiv.rfl
end pointed open pointed
open is_trunc is_conn
namespace is_conn
section
variables (A : Type*) (n : ℕ₋₂) [H : is_conn (n.+1) A]
include H
definition is_contr_ppi_match (P : A → Type*) (H : Πa, is_trunc (n.+1) (P a))
: is_contr (Π*(a : A), P a) :=
begin
apply is_contr.mk pt,
intro f, induction f with f p,
apply ppi_eq, fapply ppi_homotopy.mk,
{ apply is_conn.elim n, exact p⁻¹ },
{ krewrite (is_conn.elim_β n), apply con.left_inv }
end
-- definition is_trunc_ppi_of_is_conn (k : ℕ₋₂) (P : A → Type*)
-- : is_trunc k.+1 (Π*(a : A), P a) :=
definition is_trunc_ppi_of_is_conn (k l : ℕ₋₂) (H2 : l ≤ n.+1+2+k)
(P : A → Type*) (H3 : Πa, is_trunc l (P a)) :
is_trunc k.+1 (Π*(a : A), P a) :=
begin
have H4 : Πa, is_trunc (n.+1+2+k) (P a), from λa, is_trunc_of_le (P a) H2,
clear H2 H3, revert P H4,
induction k with k IH: intro P H4,
{ apply is_prop_of_imp_is_contr, intro f,
apply is_contr_ppi_match A n P H4 },
{ apply is_trunc_succ_of_is_trunc_loop
(trunc_index.succ_le_succ (trunc_index.minus_two_le k)),
intro f,
apply @is_trunc_equiv_closed_rev _ _ k.+1 (ppi_loop_equiv f),
apply IH, intro a,
apply is_trunc_loop, apply H4 }
end
definition is_trunc_pmap_of_is_conn (k l : ℕ₋₂) (B : Type*) (H2 : l ≤ n.+1+2+k)
(H3 : is_trunc l B) : is_trunc k.+1 (A →* B) :=
@is_trunc_equiv_closed _ _ k.+1 (ppi_equiv_pmap A B)
(is_trunc_ppi_of_is_conn A n k l H2 (λ a, B) _)
end
-- this is probably much easier to prove directly
definition is_trunc_ppi (A : Type*) (n k : ℕ₋₂) (H : n ≤ k) (P : A → Type*)
(H2 : Πa, is_trunc n (P a)) : is_trunc k (Π*(a : A), P a) :=
begin
cases k with k,
{ apply is_contr_of_merely_prop,
{ exact @is_trunc_ppi_of_is_conn A -2 (is_conn_minus_one A (tr pt)) -2 _
(trunc_index.le.step H) P H2 },
{ exact tr pt } },
{ assert K : n ≤ -1 +2+ k,
{ rewrite (trunc_index.add_plus_two_comm -1 k), exact H },
{ exact @is_trunc_ppi_of_is_conn A -2 (is_conn_minus_one A (tr pt)) k _ K P H2 } }
end
end is_conn