179575794a
Also separate exact_couple and spectral_sequence in separate files
143 lines
6.5 KiB
Text
143 lines
6.5 KiB
Text
/- Spectral sequences
|
||
- basic properties of spectral sequences
|
||
- currently, we only construct an spectral sequence from an exact couple
|
||
-/
|
||
|
||
-- Author: Floris van Doorn
|
||
|
||
import .exact_couple
|
||
|
||
open algebra is_trunc left_module is_equiv equiv eq function nat sigma set_quotient group
|
||
left_module group int prod prod.ops
|
||
open exact_couple (Z2)
|
||
|
||
structure convergent_spectral_sequence.{u v w} {R : Ring} (E' : agℤ → agℤ → LeftModule.{u v} R)
|
||
(Dinf : agℤ → LeftModule.{u w} R) : Type.{max u (v+1) (w+1)} :=
|
||
(E : ℕ → graded_module.{u 0 v} R Z2)
|
||
(d : Π(r : ℕ), E r →gm E r)
|
||
(deg_d : ℕ → Z2)
|
||
(deg_d_eq0 : Π(r : ℕ), deg (d r) 0 = deg_d r)
|
||
(α : Π(r : ℕ) (x : Z2), E (r+1) x ≃lm graded_homology (d r) (d r) x)
|
||
(e : Π(x : Z2), E 0 x ≃lm E' x.1 x.2)
|
||
(s₀ : Z2 → ℕ)
|
||
(f : Π{r : ℕ} {x : Z2} (h : s₀ x ≤ r), E (s₀ x) x ≃lm E r x)
|
||
(lb : ℤ → ℤ)
|
||
(HDinf : Π(n : agℤ), is_built_from (Dinf n)
|
||
(λ(k : ℕ), (λx, E (s₀ x) x) (n - (k + lb n), k + lb n)))
|
||
|
||
definition convergent_spectral_sequence_g [reducible] (E' : agℤ → agℤ → AbGroup)
|
||
(Dinf : agℤ → AbGroup) : Type :=
|
||
convergent_spectral_sequence (λn s, LeftModule_int_of_AbGroup (E' n s))
|
||
(λn, LeftModule_int_of_AbGroup (Dinf n))
|
||
|
||
section exact_couple
|
||
open exact_couple exact_couple.exact_couple exact_couple.convergent_exact_couple
|
||
exact_couple.convergence_theorem exact_couple.derived_couple
|
||
|
||
definition convergent_spectral_sequence_of_exact_couple {R : Ring} {E' : agℤ → agℤ → LeftModule R}
|
||
{Dinf : agℤ → LeftModule R} (c : convergent_exact_couple E' Dinf)
|
||
(st_eq : Πn, (st c n).1 + (st c n).2 = n) (deg_i_eq : deg (i (X c)) 0 = (-(1 : ℤ), (1 : ℤ))) :
|
||
convergent_spectral_sequence E' Dinf :=
|
||
convergent_spectral_sequence.mk (λr, E (page (X c) r)) (λr, d (page (X c) r))
|
||
(deg_d c) (deg_d_eq0 c)
|
||
(λr ns, by reflexivity) (e c) (B3 (HH c)) (λr ns Hr, Einfstable (HH c) Hr idp)
|
||
(λn, (st c n).2)
|
||
begin
|
||
intro n,
|
||
refine is_built_from_isomorphism (f c n) _ (is_built_from_infpage (HH c) (st c n) (HB c n)),
|
||
intro p, apply isomorphism_of_eq, apply ap (λx, E (page (X c) (B3 (HH c) x)) x),
|
||
induction p with p IH,
|
||
{ exact !prod.eta⁻¹ ⬝ prod_eq (eq_sub_of_add_eq (ap (add _) !zero_add ⬝ st_eq n))
|
||
(zero_add (st c n).2)⁻¹ },
|
||
{ assert H1 : Π(a : ℤ), n - (p + a) - (1 : ℤ) = n - (succ p + a),
|
||
exact λa, !sub_add_eq_sub_sub⁻¹ ⬝ ap (sub n) (add_comm_middle p a (1 : ℤ) ⬝ proof idp qed),
|
||
assert H2 : Π(a : ℤ), p + a + 1 = succ p + a,
|
||
exact λa, add_comm_middle p a 1,
|
||
refine ap (deg (i (X c))) IH ⬝ !deg_eq ⬝ ap (add _) deg_i_eq ⬝ prod_eq !H1 !H2 }
|
||
end
|
||
end exact_couple
|
||
|
||
namespace spectral_sequence
|
||
open convergent_spectral_sequence
|
||
|
||
variables {R : Ring} {E' : agℤ → agℤ → LeftModule R} {Dinf : agℤ → LeftModule R}
|
||
(c : convergent_spectral_sequence E' Dinf)
|
||
|
||
-- (E : ℕ → graded_module.{u 0 v} R Z2)
|
||
-- (d : Π(r : ℕ), E r →gm E r)
|
||
-- (deg_d : ℕ → Z2)
|
||
-- (deg_d_eq0 : Π(r : ℕ), deg (d r) 0 = deg_d r)
|
||
-- (α : Π(r : ℕ) (x : Z2), E (r+1) x ≃lm graded_homology (d r) (d r) x)
|
||
-- (e : Π(x : Z2), E 0 x ≃lm E' x.1 x.2)
|
||
-- (s₀ : Z2 → ℕ)
|
||
-- (f : Π{r : ℕ} {x : Z2} (h : s₀ x ≤ r), E (s₀ x) x ≃lm E r x)
|
||
-- (lb : ℤ → ℤ)
|
||
-- (HDinf : Π(n : agℤ), is_built_from (Dinf n)
|
||
-- (λ(k : ℕ), (λx, E (s₀ x) x) (n - (k + lb n), k + lb n)))
|
||
|
||
definition Einf (x : Z2) : LeftModule R := E c (s₀ c x) x
|
||
|
||
definition is_contr_E_succ (r : ℕ) (x : Z2) (h : is_contr (E c r x)) : is_contr (E c (r+1) x) :=
|
||
is_contr_equiv_closed_rev (equiv_of_isomorphism (α c r x)) (is_contr_homology _ _ _)
|
||
|
||
definition deg_d_eq (r : ℕ) (x : Z2) : deg (d c r) x = x + deg_d c r :=
|
||
!deg_eq ⬝ ap (add _) !deg_d_eq0
|
||
|
||
definition deg_d_inv_eq (r : ℕ) (x : Z2) : (deg (d c r))⁻¹ᵉ x = x - deg_d c r :=
|
||
inv_eq_of_eq (!deg_d_eq ⬝ !neg_add_cancel_right)⁻¹
|
||
|
||
definition is_contr_E_of_le {r₁ r₂ : ℕ} (H : r₁ ≤ r₂) (x : Z2) (h : is_contr (E c r₁ x)) :
|
||
is_contr (E c r₂ x) :=
|
||
begin
|
||
induction H with r₂ H IH,
|
||
{ exact h },
|
||
{ apply is_contr_E_succ, exact IH }
|
||
end
|
||
|
||
definition is_contr_E (r : ℕ) (x : Z2) (h : is_contr (E' x.1 x.2)) : is_contr (E c r x) :=
|
||
is_contr_E_of_le c !zero_le x (is_contr_equiv_closed_rev (equiv_of_isomorphism (e c x)) h)
|
||
|
||
definition is_contr_Einf (x : Z2) (h : is_contr (E' x.1 x.2)) : is_contr (Einf c x) :=
|
||
is_contr_E c (s₀ c x) x h
|
||
|
||
definition E_isomorphism {r₁ r₂ : ℕ} {ns : Z2} (H : r₁ ≤ r₂)
|
||
(H1 : Π⦃r⦄, r₁ ≤ r → r < r₂ → is_contr (E c r (ns - deg_d c r)))
|
||
(H2 : Π⦃r⦄, r₁ ≤ r → r < r₂ → is_contr (E c r (ns + deg_d c r))) :
|
||
E c r₂ ns ≃lm E c r₁ ns :=
|
||
begin
|
||
assert H3 : Π⦃r⦄, r₁ ≤ r → r ≤ r₂ → E c r ns ≃lm E c r₁ ns,
|
||
{ intro r Hr₁ Hr₂,
|
||
induction Hr₁ with r Hr₁ IH, reflexivity,
|
||
let Hr₂' := le_of_succ_le Hr₂,
|
||
refine α c r ns ⬝lm homology_isomorphism _ _ _ _ ⬝lm IH Hr₂',
|
||
exact is_contr_equiv_closed (equiv_ap (E c r) !deg_d_inv_eq⁻¹) (H1 Hr₁ Hr₂),
|
||
exact is_contr_equiv_closed (equiv_ap (E c r) !deg_d_eq⁻¹) (H2 Hr₁ Hr₂) },
|
||
exact H3 H (le.refl _)
|
||
end
|
||
|
||
definition E_isomorphism0 {r : ℕ} {n s : agℤ}
|
||
(H1 : Πr', r' < r → is_contr (E' (n - (deg_d c r').1) (s - (deg_d c r').2)))
|
||
(H2 : Πr', r' < r → is_contr (E' (n + (deg_d c r').1) (s + (deg_d c r').2))) :
|
||
E c r (n, s) ≃lm E' n s :=
|
||
E_isomorphism c !zero_le (λr' Hr₁ Hr₂, is_contr_E c r' _ (H1 r' Hr₂))
|
||
(λr' Hr₁ Hr₂, is_contr_E c r' _ (H2 r' Hr₂)) ⬝lm
|
||
e c (n, s)
|
||
|
||
definition Einf_isomorphism (r₁ : ℕ) {ns : Z2}
|
||
(H1 : Π⦃r⦄, r₁ ≤ r → is_contr (E c r (ns - deg_d c r)))
|
||
(H2 : Π⦃r⦄, r₁ ≤ r → is_contr (E c r (ns + deg_d c r))) :
|
||
Einf c ns ≃lm E c r₁ ns :=
|
||
begin
|
||
cases le.total r₁ (s₀ c ns) with Hr Hr,
|
||
exact E_isomorphism c Hr (λr Hr₁ Hr₂, H1 Hr₁) (λr Hr₁ Hr₂, H2 Hr₁),
|
||
exact f c Hr
|
||
end
|
||
|
||
definition Einf_isomorphism0 {n s : agℤ}
|
||
(H1 : Πr, is_contr (E' (n - (deg_d c r).1) (s - (deg_d c r).2)))
|
||
(H2 : Πr, is_contr (E' (n + (deg_d c r).1) (s + (deg_d c r).2))) :
|
||
Einf c (n, s) ≃lm E' n s :=
|
||
E_isomorphism0 c (λr Hr, H1 r) (λr Hr, H2 r)
|
||
|
||
|
||
end spectral_sequence
|