Spectral/algebra/subgroup.hlean
2016-12-01 14:39:10 -05:00

328 lines
13 KiB
Text

/-
Copyright (c) 2015 Egbert Rijke. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Egbert Rijke
Basic concepts of group theory
-/
import algebra.group_theory
open eq algebra is_trunc sigma sigma.ops prod trunc
namespace group
/- #Subgroups -/
/-- Recall that a subtype of a type A is the same thing as a family of mere propositions over A. Thus, we define a subgroup of a group G to be a family of mere propositions over (the underlying type of) G, closed under the constants and operations --/
/-- Question: Why is this called subgroup_rel. Because it is a unary relation? --/
structure subgroup_rel (G : Group) : Type :=
(R : G → Prop)
(Rone : R one)
(Rmul : Π{g h}, R g → R h → R (g * h))
(Rinv : Π{g}, R g → R (g⁻¹))
attribute subgroup_rel.R [coercion]
/-- Every group G has at least two subgroups, the trivial subgroup containing only one, and the full subgroup. --/
definition trivial_subgroup.{u} (G : Group.{u}) : subgroup_rel.{u u} G :=
begin
fapply subgroup_rel.mk,
{ intro g, fapply trunctype.mk, exact (g = one), exact _ },
{ esimp },
{ intros g h p q, esimp at *, rewrite p, rewrite q, exact mul_one one},
{ intros g p, esimp at *, rewrite p, exact one_inv }
end
definition is_trivial_subgroup (G : Group) (R : subgroup_rel G) : Prop :=
trunctype.mk (Π g : G, R g ↔ trivial_subgroup G g)
begin
apply pi.is_trunc_pi, intro g, apply is_trunc_prod
end
definition full_subgroup.{u} (G : Group.{u}) : subgroup_rel.{u 0} G :=
begin
fapply subgroup_rel.mk,
{ intro g, fapply trunctype.mk, exact unit, exact _}, -- instead of the unit type, we take g = g, because the unit type is in Type₀ and not in Type.{u}
{ esimp, constructor },
{ intros g h p q, esimp, constructor },
{ intros g p, esimp, constructor }
end
definition is_full_subgroup (G : Group) (R : subgroup_rel G) : Prop :=
trunctype.mk' -1 (Π g : G, R g)
/-- Every group homomorphism f : G -> H determines a subgroup of H, the image of f, and a subgroup of G, the kernel of f. In the following definition we define the image of f. Since a subgroup is required to be closed under the group operations, showing that the image of f is closed under the group operations is part of the definition of the image of f. --/
/-- TODO. We need to find some reasonable way of dealing with universe levels. The reason why it currently is what it is, is because lean is inflexible with universe leves once tactic mode is started --/
definition image_subgroup.{u1 u2} {G : Group.{u1}} {H : Group.{u2}} (f : G →g H) : subgroup_rel.{u2 (max u1 u2)} H :=
begin
fapply subgroup_rel.mk,
-- definition of the subset
{ intro h, apply ttrunc, exact fiber f h},
-- subset contains 1
{ apply trunc.tr, fapply fiber.mk, exact 1, apply respect_one},
-- subset is closed under multiplication
{ intro h h', intro u v,
induction u with p, induction v with q,
induction p with x p, induction q with y q,
induction p, induction q,
apply tr, apply fiber.mk (x * y), apply respect_mul},
-- subset is closed under inverses
{ intro g, intro t, induction t, induction a with x p, induction p,
apply tr, apply fiber.mk x⁻¹, apply respect_inv }
end
section kernels
variables {G₁ G₂ : Group}
-- TODO: maybe define this in more generality for pointed sets?
definition kernel_pred [constructor] (φ : G₁ →g G₂) (g : G₁) : Prop := trunctype.mk (φ g = 1) _
theorem kernel_mul (φ : G₁ →g G₂) (g h : G₁) (H₁ : kernel_pred φ g) (H₂ : kernel_pred φ h) : kernel_pred φ (g *[G₁] h) :=
begin
esimp at *,
exact calc
φ (g * h) = (φ g) * (φ h) : to_respect_mul
... = 1 * (φ h) : H₁
... = 1 * 1 : H₂
... = 1 : one_mul
end
theorem kernel_inv (φ : G₁ →g G₂) (g : G₁) (H : kernel_pred φ g) : kernel_pred φ (g⁻¹) :=
begin
esimp at *,
exact calc
φ g⁻¹ = (φ g)⁻¹ : to_respect_inv
... = 1⁻¹ : H
... = 1 : one_inv
end
definition kernel_subgroup [constructor] (φ : G₁ →g G₂) : subgroup_rel G₁ :=
⦃ subgroup_rel,
R := kernel_pred φ,
Rone := respect_one φ,
Rmul := kernel_mul φ,
Rinv := kernel_inv φ
end kernels
/-- Now we should be able to show that if f is a homomorphism for which the kernel is trivial and the image is full, then f is an isomorphism, except that no one defined the proposition that f is an isomorphism :/ --/
-- definition is_iso_from_kertriv_imfull {G H : Group} (f : G →g H) : is_trivial_subgroup G (kernel f) → is_full_subgroup H (image_subgroup f) → unit /- replace unit by is_isomorphism f -/ := sorry
/- #Normal subgroups -/
/-- Next, we formalize some aspects of normal subgroups. Recall that a normal subgroup H of a group G is a subgroup which is invariant under all inner automorophisms on G. --/
definition is_normal [constructor] {G : Group} (R : G → Prop) : Prop :=
trunctype.mk (Π{g} h, R g → R (h * g * h⁻¹)) _
structure normal_subgroup_rel (G : Group) extends subgroup_rel G :=
(is_normal_subgroup : is_normal R)
attribute subgroup_rel.R [coercion]
abbreviation subgroup_to_rel [unfold 2] := @subgroup_rel.R
abbreviation subgroup_has_one [unfold 2] := @subgroup_rel.Rone
abbreviation subgroup_respect_mul [unfold 2] := @subgroup_rel.Rmul
abbreviation subgroup_respect_inv [unfold 2] := @subgroup_rel.Rinv
abbreviation is_normal_subgroup [unfold 2] := @normal_subgroup_rel.is_normal_subgroup
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
{A B : CommGroup}
theorem is_normal_subgroup' (h : G) (r : N g) : N (h⁻¹ * g * h) :=
inv_inv h ▸ is_normal_subgroup N h⁻¹ r
definition normal_subgroup_rel_comm.{u} [constructor] (R : subgroup_rel.{_ u} A)
: normal_subgroup_rel.{_ u} A :=
⦃normal_subgroup_rel, R,
is_normal_subgroup := abstract begin
intros g h r, xrewrite [mul.comm h g, mul_inv_cancel_right], exact r
end end⦄
theorem is_normal_subgroup_rev (h : G) (r : N (h * g * h⁻¹)) : N g :=
have H : h⁻¹ * (h * g * h⁻¹) * h = g, from calc
h⁻¹ * (h * g * h⁻¹) * h = h⁻¹ * (h * g) * h⁻¹ * h : by rewrite [-mul.assoc h⁻¹]
... = h⁻¹ * (h * g) : by rewrite [inv_mul_cancel_right]
... = g : inv_mul_cancel_left,
H ▸ is_normal_subgroup' N h r
theorem is_normal_subgroup_rev' (h : G) (r : N (h⁻¹ * g * h)) : N g :=
is_normal_subgroup_rev N h⁻¹ ((inv_inv h)⁻¹ ▸ r)
theorem normal_subgroup_insert (r : N k) (r' : N (g * h)) : N (g * (k * h)) :=
have H1 : N ((g * h) * (h⁻¹ * k * h)), from
subgroup_respect_mul N r' (is_normal_subgroup' N h r),
have H2 : (g * h) * (h⁻¹ * k * h) = g * (k * h), from calc
(g * h) * (h⁻¹ * k * h) = g * (h * (h⁻¹ * k * h)) : mul.assoc
... = g * (h * (h⁻¹ * (k * h))) : by rewrite [mul.assoc h⁻¹]
... = g * (k * h) : by rewrite [mul_inv_cancel_left],
show N (g * (k * h)), from H2 ▸ H1
/-- In the following, we show that the kernel of any group homomorphism f : G₁ →g G₂ is a normal subgroup of G₁ --/
theorem is_normal_subgroup_kernel {G₁ G₂ : Group} (φ : G₁ →g G₂) (g : G₁) (h : G₁)
: kernel_pred φ g → kernel_pred φ (h * g * h⁻¹) :=
begin
esimp at *,
intro p,
exact calc
φ (h * g * h⁻¹) = (φ (h * g)) * φ (h⁻¹) : to_respect_mul
... = (φ h) * (φ g) * (φ h⁻¹) : to_respect_mul
... = (φ h) * 1 * (φ h⁻¹) : p
... = (φ h) * (φ h⁻¹) : mul_one
... = (φ h) * (φ h)⁻¹ : to_respect_inv
... = 1 : mul.right_inv
end
/-- Thus, we extend the kernel subgroup to a normal subgroup --/
definition normal_subgroup_kernel [constructor] {G₁ G₂ : Group} (φ : G₁ →g G₂) : normal_subgroup_rel G₁ :=
⦃ normal_subgroup_rel,
kernel_subgroup φ,
is_normal_subgroup := is_normal_subgroup_kernel φ
-- this is just (Σ(g : G), H g), but only defined if (H g) is a prop
definition sg : Type := {g : G | H g}
local attribute sg [reducible]
variable {H}
definition subgroup_one [constructor] : sg H := ⟨one, !subgroup_has_one⟩
definition subgroup_inv [unfold 3] : sg H → sg H :=
λv, ⟨v.1⁻¹, subgroup_respect_inv H v.2⟩
definition subgroup_mul [unfold 3 4] : sg H → sg H → sg H :=
λv w, ⟨v.1 * w.1, subgroup_respect_mul H v.2 w.2⟩
section
local notation 1 := subgroup_one
local postfix ⁻¹ := subgroup_inv
local infix * := subgroup_mul
theorem subgroup_mul_assoc (g₁ g₂ g₃ : sg H) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
subtype_eq !mul.assoc
theorem subgroup_one_mul (g : sg H) : 1 * g = g :=
subtype_eq !one_mul
theorem subgroup_mul_one (g : sg H) : g * 1 = g :=
subtype_eq !mul_one
theorem subgroup_mul_left_inv (g : sg H) : g⁻¹ * g = 1 :=
subtype_eq !mul.left_inv
theorem subgroup_mul_comm {G : CommGroup} {H : subgroup_rel G} (g h : sg H)
: g * h = h * g :=
subtype_eq !mul.comm
end
variable (H)
definition group_sg [constructor] : group (sg H) :=
group.mk subgroup_mul _ subgroup_mul_assoc subgroup_one subgroup_one_mul subgroup_mul_one
subgroup_inv subgroup_mul_left_inv
definition subgroup [constructor] : Group :=
Group.mk _ (group_sg H)
definition comm_group_sg [constructor] {G : CommGroup} (H : subgroup_rel G)
: comm_group (sg H) :=
⦃comm_group, group_sg H, mul_comm := subgroup_mul_comm⦄
definition comm_subgroup [constructor] {G : CommGroup} (H : subgroup_rel G)
: CommGroup :=
CommGroup.mk _ (comm_group_sg H)
definition kernel {G H : Group} (f : G →g H) : Group := subgroup (kernel_subgroup f)
definition comm_kernel {G H : CommGroup} (f : G →g H) : CommGroup := comm_subgroup (kernel_subgroup f)
definition incl_of_subgroup [constructor] {G : Group} (H : subgroup_rel G) : subgroup H →g G :=
begin
fapply homomorphism.mk,
-- the underlying function
{ intro h, induction h with g, exact g},
-- is a homomorphism
intro g h, reflexivity
end
definition subgroup_rel_of_subgroup {G : Group} (H1 H2 : subgroup_rel G) (hyp : Π (g : G), subgroup_rel.R H1 g → subgroup_rel.R H2 g) : subgroup_rel (subgroup H2) :=
subgroup_rel.mk
-- definition of the subset
(λ h, H1 (incl_of_subgroup H2 h))
-- contains 1
(subgroup_has_one H1)
-- closed under multiplication
(λ g h p q, subgroup_respect_mul H1 p q)
-- closed under inverses
(λ h p, subgroup_respect_inv H1 p)
definition image {G H : Group} (f : G →g H) : Group :=
subgroup (image_subgroup f)
definition CommGroup_of_Group.{u} (G : Group.{u}) (H : Π (g h : G), mul g h = mul h g) : CommGroup.{u} :=
begin
induction G,
induction struct,
fapply CommGroup.mk,
exact carrier,
fapply comm_group.mk,
repeat assumption,
exact H
end
definition comm_image {G : CommGroup} {H : Group} (f : G →g H) : CommGroup :=
CommGroup_of_Group (image f)
begin
intro g h,
induction g with x t, induction h with y s,
fapply subtype_eq,
induction t with p, induction s with q, induction p with g p, induction q with h q, induction p, induction q,
refine (((respect_mul f g h)⁻¹ ⬝ _) ⬝ (respect_mul f h g)),
apply (ap f),
induction G, induction struct, apply mul_comm
end
definition image_incl {G H : Group} (f : G →g H) : image f →g H :=
incl_of_subgroup (image_subgroup f)
definition comm_image_incl {A B : CommGroup} (f : A →g B) : comm_image f →g B := incl_of_subgroup (image_subgroup f)
definition hom_lift {G H : Group} (f : G →g H) (K : subgroup_rel H) (Hyp : Π (g : G), K (f g)) : G →g subgroup K :=
begin
fapply homomorphism.mk,
intro g,
fapply sigma.mk,
exact f g,
fapply Hyp,
intro g h, apply subtype_eq, esimp, apply respect_mul
end
definition image_lift {G H : Group} (f : G →g H) : G →g image f :=
begin
fapply hom_lift f,
intro g,
apply tr,
fapply fiber.mk,
exact g, reflexivity
end
definition image_factor {G H : Group} (f : G →g H) : f = (image_incl f) ∘g (image_lift f) :=
begin
fapply homomorphism_eq,
reflexivity
end
definition image_incl_injective {G H : Group} (f : G →g H) : Π (x y : image f), (image_incl f x = image_incl f y) → (x = y) :=
begin
intro x y,
intro p,
fapply subtype_eq,
exact p
end
definition image_incl_eq_one {G H : Group} (f : G →g H) : Π (x : image f), (image_incl f x = 1) → x = 1 :=
begin
intro x,
fapply image_incl_injective f x 1,
end
end group