Spectral/homotopy/fwedge.hlean

132 lines
5 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2016 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jakob von Raumer, Ulrik Buchholtz
The Wedge Sum of a family of Pointed Types
-/
import homotopy.wedge ..move_to_lib ..choice
open eq pushout pointed unit trunc_index sigma bool equiv trunc choice
definition fwedge' {I : Type} (F : I → Type*) : Type := pushout (λi, ⟨i, Point (F i)⟩) (λi, ⋆)
definition pt' [constructor] {I : Type} {F : I → Type*} : fwedge' F := inr ⋆
definition fwedge [constructor] {I : Type} (F : I → Type*) : Type* := pointed.MK (fwedge' F) pt'
notation `` := fwedge
namespace fwedge
variables {I : Type} {F : I → Type*}
definition il {i : I} (x : F i) : F := inl ⟨i, x⟩
definition inl (i : I) (x : F i) : F := il x
definition pinl [constructor] (i : I) : F i →* F := pmap.mk (inl i) (glue i)
definition glue (i : I) : inl i pt = pt :> F := glue i
protected definition rec {P : F → Type} (Pinl : Π(i : I) (x : F i), P (il x))
(Pinr : P pt) (Pglue : Πi, pathover P (Pinl i pt) (glue i) (Pinr)) (y : fwedge' F) : P y :=
begin induction y, induction x, apply Pinl, induction x, apply Pinr, apply Pglue end
protected definition elim {P : Type} (Pinl : Π(i : I) (x : F i), P)
(Pinr : P) (Pglue : Πi, Pinl i pt = Pinr) (y : fwedge' F) : P :=
begin induction y with x u, induction x with i x, exact Pinl i x, induction u, apply Pinr, apply Pglue end
protected definition elim_glue {P : Type} {Pinl : Π(i : I) (x : F i), P}
{Pinr : P} (Pglue : Πi, Pinl i pt = Pinr) (i : I)
: ap (fwedge.elim Pinl Pinr Pglue) (fwedge.glue i) = Pglue i :=
!pushout.elim_glue
protected definition rec_glue {P : F → Type} {Pinl : Π(i : I) (x : F i), P (il x)}
{Pinr : P pt} (Pglue : Πi, pathover P (Pinl i pt) (glue i) (Pinr)) (i : I)
: apd (fwedge.rec Pinl Pinr Pglue) (fwedge.glue i) = Pglue i :=
!pushout.rec_glue
end fwedge
attribute fwedge.rec fwedge.elim [recursor 7] [unfold 7]
attribute fwedge.il fwedge.inl [constructor]
namespace fwedge
definition fwedge_of_pwedge [unfold 3] {A B : Type*} (x : A B) : (bool.rec A B) :=
begin
induction x with a b,
{ exact inl ff a },
{ exact inl tt b },
{ exact glue ff ⬝ (glue tt)⁻¹ }
end
definition pwedge_of_fwedge [unfold 3] {A B : Type*} (x : (bool.rec A B)) : A B :=
begin
induction x with b x b,
{ induction b, exact pushout.inl x, exact pushout.inr x },
{ exact pushout.inr pt },
{ induction b, exact pushout.glue ⋆, reflexivity }
end
definition pwedge_pequiv_fwedge [constructor] (A B : Type*) : A B ≃* (bool.rec A B) :=
begin
fapply pequiv_of_equiv,
{ fapply equiv.MK,
{ exact fwedge_of_pwedge },
{ exact pwedge_of_fwedge },
{ exact abstract begin intro x, induction x with b x b,
{ induction b: reflexivity },
{ exact glue tt },
{ apply eq_pathover_id_right,
refine ap_compose fwedge_of_pwedge _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
induction b, exact !elim_glue ⬝ph whisker_bl _ hrfl, apply square_of_eq idp }
end end },
{ exact abstract begin intro x, induction x with a b,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right,
refine ap_compose pwedge_of_fwedge _ _ ⬝ ap02 _ !elim_glue ⬝ !ap_con ⬝
!elim_glue ◾ (!ap_inv ⬝ !elim_glue⁻²) ⬝ph _, exact hrfl } end end}},
{ exact glue ff }
end
definition fwedge_pmap [constructor] {I : Type} {F : I → Type*} {X : Type*} (f : Πi, F i →* X) : F →* X :=
begin
fconstructor,
{ intro x, induction x,
exact f i x,
exact pt,
exact respect_pt (f i) },
{ reflexivity }
end
definition fwedge_pmap_beta [constructor] {I : Type} {F : I → Type*} {X : Type*} (f : Πi, F i →* X) (i : I) :
fwedge_pmap f ∘* pinl i ~* f i :=
begin
fconstructor,
{ reflexivity },
{ exact !idp_con ⬝ !fwedge.elim_glue⁻¹ }
end
definition fwedge_pmap_eta [constructor] {I : Type} {F : I → Type*} {X : Type*} (g : F →* X) :
fwedge_pmap (λi, g ∘* pinl i) ~* g :=
begin
fconstructor,
{ intro x, induction x,
reflexivity,
exact (respect_pt g)⁻¹,
apply eq_pathover, refine !elim_glue ⬝ph _, apply whisker_lb, exact hrfl },
{ exact con.left_inv (respect_pt g) }
end
definition fwedge_pmap_equiv [constructor] {I : Type} (F : I → Type*) (X : Type*) :
F →* X ≃ Πi, F i →* X :=
begin
fapply equiv.MK,
{ intro g i, exact g ∘* pinl i },
{ exact fwedge_pmap },
{ intro f, apply eq_of_homotopy, intro i, apply eq_of_phomotopy, apply fwedge_pmap_beta f i },
{ intro g, apply eq_of_phomotopy, exact fwedge_pmap_eta g }
end
definition trunc_fwedge_pmap_equiv.{u} {n : ℕ₋₂} {I : Type.{u}} (H : has_choice n I)
(F : I → pType.{u}) (X : pType.{u}) : trunc n (F →* X) ≃ Πi, trunc n (F i →* X) :=
trunc_equiv_trunc n (fwedge_pmap_equiv F X) ⬝e choice_equiv H (λi, F i →* X)
end fwedge