Spectral/move_to_lib.hlean
2018-09-11 19:24:51 +02:00

260 lines
10 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- definitions, theorems and attributes which should be moved to files in the HoTT library
import homotopy.sphere2 homotopy.cofiber homotopy.wedge hit.prop_trunc hit.set_quotient eq2 types.pointed2 algebra.graph algebra.category.functor.equivalence
open eq nat int susp pointed sigma is_equiv equiv fiber algebra trunc pi group
is_trunc function unit prod bool
universe variable u
namespace eq
definition transport_lemma {A : Type} {C : A → Type} {g₁ : A → A}
{x y : A} (p : x = y) (f : Π⦃x⦄, C x → C (g₁ x)) (z : C x) :
transport C (ap g₁ p)⁻¹ (f (transport C p z)) = f z :=
by induction p; reflexivity
definition transport_lemma2 {A : Type} {C : A → Type} {g₁ : A → A}
{x y : A} (p : x = y) (f : Π⦃x⦄, C x → C (g₁ x)) (z : C x) :
transport C (ap g₁ p) (f z) = f (transport C p z) :=
by induction p; reflexivity
variables {A A' B : Type} {a a₂ a₃ : A} {p p' : a = a₂} {p₂ : a₂ = a₃}
{a' a₂' a₃' : A'} {b b₂ : B}
end eq open eq
namespace nat
-- definition rec_down_le_beta_lt (P : → Type) (s : ) (H0 : Πn, s ≤ n → P n)
-- (Hs : Πn, P (n+1) → P n) (n : ) (Hn : n < s) :
-- rec_down_le P s H0 Hs n = Hs n (rec_down_le P s H0 Hs (n+1)) :=
-- begin
-- revert n Hn, induction s with s IH: intro n Hn,
-- { exfalso, exact not_succ_le_zero n Hn },
-- { have Hn' : n ≤ s, from le_of_succ_le_succ Hn,
-- --esimp [rec_down_le],
-- exact sorry
-- -- induction Hn' with s Hn IH,
-- -- { },
-- -- { }
-- }
-- end
end nat
-- definition ppi_eq_equiv_internal : (k = l) ≃ (k ~* l) :=
-- calc (k = l) ≃ ppi.sigma_char P p₀ k = ppi.sigma_char P p₀ l
-- : eq_equiv_fn_eq (ppi.sigma_char P p₀) k l
-- ... ≃ Σ(p : k = l),
-- pathover (λh, h pt = p₀) (respect_pt k) p (respect_pt l)
-- : sigma_eq_equiv _ _
-- ... ≃ Σ(p : k = l),
-- respect_pt k = ap (λh, h pt) p ⬝ respect_pt l
-- : sigma_equiv_sigma_right
-- (λp, eq_pathover_equiv_Fl p (respect_pt k) (respect_pt l))
-- ... ≃ Σ(p : k = l),
-- respect_pt k = apd10 p pt ⬝ respect_pt l
-- : sigma_equiv_sigma_right
-- (λp, equiv_eq_closed_right _ (whisker_right _ (ap_eq_apd10 p _)))
-- ... ≃ Σ(p : k ~ l), respect_pt k = p pt ⬝ respect_pt l
-- : sigma_equiv_sigma_left' eq_equiv_homotopy
-- ... ≃ Σ(p : k ~ l), p pt ⬝ respect_pt l = respect_pt k
-- : sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
-- ... ≃ (k ~* l) : phomotopy.sigma_char k l
namespace pointed
end pointed open pointed
namespace trunc
open trunc_index sigma.ops
-- TODO: redefine loopn_ptrunc_pequiv
definition apn_ptrunc_functor (n : ℕ₋₂) (k : ) {A B : Type*} (f : A →* B) :
Ω→[k] (ptrunc_functor (n+k) f) ∘* (loopn_ptrunc_pequiv n k A)⁻¹ᵉ* ~*
(loopn_ptrunc_pequiv n k B)⁻¹ᵉ* ∘* ptrunc_functor n (Ω→[k] f) :=
begin
revert n, induction k with k IH: intro n,
{ reflexivity },
{ exact sorry }
end
end trunc open trunc
namespace sigma
open sigma.ops
-- open sigma.ops
-- definition eq.rec_sigma {A : Type} {B : A → Type} {a₀ : A} {b₀ : B a₀}
-- {P : Π(a : A) (b : B a), ⟨a₀, b₀⟩ = ⟨a, b⟩ → Type} (H : P a₀ b₀ idp) {a : A} {b : B a}
-- (p : ⟨a₀, b₀⟩ = ⟨a, b⟩) : P a b p :=
-- sorry
-- definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} {C : Πa, B a → Type}
-- {a a' : A} {p : a = a'} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'}
-- [Πa b, is_prop (C a b)] : ⟨b, c⟩ =[p] ⟨b', c'⟩ ≃ b =[p] b' :=
-- begin
-- fapply equiv.MK,
-- { exact pathover_pr1 },
-- { intro q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo },
-- { intro q, induction q,
-- have c = c', from !is_prop.elim, induction this,
-- rewrite [▸*, is_prop_elimo_self (C a) c] },
-- { esimp, generalize ⟨b, c⟩, intro x q, }
-- end
definition sigma_equiv_of_is_embedding_left_fun [constructor] {X Y : Type} {P : Y → Type}
{f : X → Y} (H : Πy, P y → fiber f y) (v : Σy, P y) : Σx, P (f x) :=
⟨fiber.point (H v.1 v.2), transport P (point_eq (H v.1 v.2))⁻¹ v.2⟩
definition sigma_equiv_of_is_embedding_left [constructor] {X Y : Type} {P : Y → Type}
(f : X → Y) (Hf : is_embedding f) (HP : Πx, is_prop (P (f x))) (H : Πy, P y → fiber f y) :
(Σy, P y) ≃ Σx, P (f x) :=
begin
apply equiv.MK (sigma_equiv_of_is_embedding_left_fun H) (sigma_functor f (λa, id)),
{ intro v, induction v with x p, esimp [sigma_equiv_of_is_embedding_left_fun],
fapply sigma_eq, apply @is_injective_of_is_embedding _ _ f, exact point_eq (H (f x) p),
apply is_prop.elimo },
{ intro v, induction v with y p, esimp, fapply sigma_eq, exact point_eq (H y p),
apply tr_pathover }
end
definition sigma_equiv_of_is_embedding_left_contr [constructor] {X Y : Type} {P : Y → Type}
(f : X → Y) (Hf : is_embedding f) (HP : Πx, is_contr (P (f x))) (H : Πy, P y → fiber f y) :
(Σy, P y) ≃ X :=
sigma_equiv_of_is_embedding_left f Hf _ H ⬝e !sigma_equiv_of_is_contr_right
end sigma open sigma
namespace group
-- definition is_equiv_isomorphism
-- some extra instances for type class inference
-- definition is_mul_hom_comm_homomorphism [instance] {G G' : AbGroup} (φ : G →g G')
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G))
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
-- homomorphism.struct φ
-- definition is_mul_hom_comm_homomorphism1 [instance] {G G' : AbGroup} (φ : G →g G')
-- : @is_mul_hom G G' _
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
-- homomorphism.struct φ
-- definition is_mul_hom_comm_homomorphism2 [instance] {G G' : AbGroup} (φ : G →g G')
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) _ φ :=
-- homomorphism.struct φ
-- definition interchange (G : AbGroup) (a b c d : G) : (a * b) * (c * d) = (a * c) * (b * d) :=
-- mul.comm4 a b c d
open option
definition add_point_AbGroup [unfold 3] {X : Type} (G : X → AbGroup) : X₊ → AbGroup
| (some x) := G x
| none := trivial_ab_group_lift
-- definition trunc_isomorphism_of_equiv {A B : Type} [inf_group A] [inf_group B] (f : A ≃ B)
-- (h : is_mul_hom f) :
-- Group.mk (trunc 0 A) (group_trunc A) ≃g Group.mk (trunc 0 B) (group_trunc B) :=
-- begin
-- apply isomorphism_of_equiv (trunc_equiv_trunc 0 f), intros x x',
-- induction x with a, induction x' with a', apply ap tr, exact h a a'
-- end
end group open group
namespace fiber
/- if we need this: do pfiber_functor_pcompose and so on first -/
-- definition psquare_pfiber_functor [constructor] {A₁ A₂ A₃ A₄ B₁ B₂ B₃ B₄ : Type*}
-- {f₁ : A₁ →* B₁} {f₂ : A₂ →* B₂} {f₃ : A₃ →* B₃} {f₄ : A₄ →* B₄}
-- {g₁₂ : A₁ →* A₂} {g₃₄ : A₃ →* A₄} {g₁₃ : A₁ →* A₃} {g₂₄ : A₂ →* A₄}
-- {h₁₂ : B₁ →* B₂} {h₃₄ : B₃ →* B₄} {h₁₃ : B₁ →* B₃} {h₂₄ : B₂ →* B₄}
-- (H₁₂ : psquare g₁₂ h₁₂ f₁ f₂) (H₃₄ : psquare g₃₄ h₃₄ f₃ f₄)
-- (H₁₃ : psquare g₁₃ h₁₃ f₁ f₃) (H₂₄ : psquare g₂₄ h₂₄ f₂ f₄)
-- (G : psquare g₁₂ g₃₄ g₁₃ g₂₄) (H : psquare h₁₂ h₃₄ h₁₃ h₂₄)
-- /- pcube H₁₂ H₃₄ H₁₃ H₂₄ G H -/ :
-- psquare (pfiber_functor g₁₂ h₁₂ H₁₂) (pfiber_functor g₃₄ h₃₄ H₃₄)
-- (pfiber_functor g₁₃ h₁₃ H₁₃) (pfiber_functor g₂₄ h₂₄ H₂₄) :=
-- begin
-- fapply phomotopy.mk,
-- { intro x, induction x with x p, induction B₁ with B₁ b₁₀, induction f₁ with f₁ f₁₀, esimp at *,
-- induction p, esimp [fiber_functor], },
-- { }
-- end
end fiber open fiber
namespace function
variables {A B : Type} {f f' : A → B}
open is_conn sigma.ops
definition homotopy_group_isomorphism_of_is_embedding (n : ) [H : is_succ n] {A B : Type*}
(f : A →* B) [H2 : is_embedding f] : πg[n] A ≃g πg[n] B :=
begin
apply isomorphism.mk (homotopy_group_homomorphism n f),
induction H with n,
apply is_equiv_of_equiv_of_homotopy
(ptrunc_pequiv_ptrunc 0 (loopn_pequiv_loopn_of_is_embedding (n+1) f)),
exact sorry
end
definition merely_constant_pmap {A B : Type*} {f : A →* B} (H : merely_constant f) (a : A) :
merely (f a = pt) :=
tconcat (tconcat (H.2 a) (tinverse (H.2 pt))) (tr (respect_pt f))
definition merely_constant_of_is_conn {A B : Type*} (f : A →* B) [is_conn 0 A] :
merely_constant f :=
⟨pt, is_conn.elim -1 _ (tr (respect_pt f))⟩
end function open function
namespace is_conn
open unit trunc_index nat is_trunc pointed.ops sigma.ops prod.ops
-- definition is_conn_pfiber_of_equiv_on_homotopy_groups (n : ) {A B : pType.{u}} (f : A →* B)
-- [H : is_conn 0 A]
-- (H1 : Πk, k ≤ n → is_equiv (π→[k] f))
-- (H2 : is_surjective (π→[succ n] f)) :
-- is_conn n (pfiber f) :=
-- _
-- definition is_conn_pelim [constructor] {k : } {X : Type*} (Y : Type*) (H : is_conn k X) :
-- (X →* connect k Y) ≃ (X →* Y) :=
end is_conn
namespace sphere
-- definition constant_sphere_map_sphere {n m : } (H : n < m) (f : S n →* S m) :
-- f ~* pconst (S n) (S m) :=
-- begin
-- assert H : is_contr (Ω[n] (S m)),
-- { apply homotopy_group_sphere_le, },
-- apply phomotopy_of_eq,
-- apply inj !sphere_pmap_pequiv,
-- apply @is_prop.elim
-- end
end sphere
namespace paths
variables {A : Type} {R : A → A → Type} {a₁ a₂ a₃ a₄ : A}
definition mem_equiv_Exists (l : R a₁ a₂) (p : paths R a₃ a₄) :
mem l p ≃ Exists (λa a' r, ⟨a₁, a₂, l⟩ = ⟨a, a', r⟩) p :=
sorry
end paths