2c97f5cef7
# Conflicts: # group_theory/basic.hlean
160 lines
5.3 KiB
Text
160 lines
5.3 KiB
Text
/-
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Floris van Doorn
|
|
|
|
Basic group theory
|
|
-/
|
|
|
|
|
|
/-
|
|
Groups are defined in the HoTT library in algebra/group, as part of the algebraic hierarchy.
|
|
However, there is currently no group theory.
|
|
The only relevant defintions are the trivial group (in types/unit) and some files in algebra/
|
|
-/
|
|
|
|
<<<<<<< HEAD
|
|
import algebra.group types.pointed types.pi
|
|
|
|
open eq algebra pointed function is_trunc pi
|
|
|
|
=======
|
|
import types.pointed types.pi algebra.bundled algebra.category.category
|
|
|
|
open eq algebra pointed function is_trunc pi category equiv is_equiv
|
|
set_option class.force_new true
|
|
>>>>>>> origin/master
|
|
namespace group
|
|
|
|
definition pointed_Group [instance] (G : Group) : pointed G := pointed.mk one
|
|
definition Pointed_of_Group (G : Group) : Type* := pointed.mk' G
|
|
definition hset_of_Group (G : Group) : hset := trunctype.mk G _
|
|
|
|
-- print Type*
|
|
-- print Pointed
|
|
|
|
definition Group_of_CommGroup [coercion] [constructor] (G : CommGroup) : Group :=
|
|
Group.mk G _
|
|
|
|
definition comm_group_Group_of_CommGroup [instance] [constructor] (G : CommGroup)
|
|
: comm_group (Group_of_CommGroup G) :=
|
|
begin esimp, exact _ end
|
|
|
|
/- group homomorphisms -/
|
|
|
|
structure homomorphism (G₁ G₂ : Group) : Type :=
|
|
(φ : G₁ → G₂)
|
|
(p : Π(g h : G₁), φ (g * h) = φ g * φ h)
|
|
|
|
attribute homomorphism.φ [coercion]
|
|
abbreviation group_fun [unfold 3] := @homomorphism.φ
|
|
abbreviation respect_mul := @homomorphism.p
|
|
infix ` →g `:55 := homomorphism
|
|
|
|
variables {G G₁ G₂ G₃ : Group} {g h : G₁} {ψ : G₂ →g G₃} {φ φ' : G₁ →g G₂}
|
|
|
|
theorem respect_one (φ : G₁ →g G₂) : φ 1 = 1 :=
|
|
mul.right_cancel
|
|
(calc
|
|
φ 1 * φ 1 = φ (1 * 1) : respect_mul
|
|
... = φ 1 : ap φ !one_mul
|
|
... = 1 * φ 1 : one_mul)
|
|
|
|
theorem respect_inv (φ : G₁ →g G₂) (g : G₁) : φ g⁻¹ = (φ g)⁻¹ :=
|
|
eq_inv_of_mul_eq_one (!respect_mul⁻¹ ⬝ ap φ !mul.left_inv ⬝ !respect_one)
|
|
|
|
definition is_hset_homomorphism [instance] (G₁ G₂ : Group) : is_hset (homomorphism G₁ G₂) :=
|
|
begin
|
|
assert H : G₁ →g G₂ ≃ Σ(f : G₁ → G₂), Π(g₁ g₂ : G₁), f (g₁ * g₂) = f g₁ * f g₂,
|
|
{ fapply equiv.MK,
|
|
{ intro φ, induction φ, constructor, assumption},
|
|
{ intro v, induction v, constructor, assumption},
|
|
{ intro v, induction v, reflexivity},
|
|
{ intro φ, induction φ, reflexivity}},
|
|
apply is_trunc_equiv_closed_rev, exact H
|
|
end
|
|
|
|
definition pmap_of_homomorphism [constructor] (φ : G₁ →g G₂)
|
|
: Pointed_of_Group G₁ →* Pointed_of_Group G₂ :=
|
|
pmap.mk φ !respect_one
|
|
|
|
definition homomorphism_eq (p : group_fun φ ~ group_fun φ') : φ = φ' :=
|
|
begin
|
|
induction φ with φ q, induction φ' with φ' q', esimp at p, induction p,
|
|
exact ap (homomorphism.mk φ) !is_hprop.elim
|
|
end
|
|
|
|
/- categorical structure of groups + homomorphisms -/
|
|
|
|
definition homomorphism_compose [constructor] (ψ : G₂ →g G₃) (φ : G₁ →g G₂) : G₁ →g G₃ :=
|
|
homomorphism.mk (ψ ∘ φ) (λg h, ap ψ !respect_mul ⬝ !respect_mul)
|
|
|
|
definition homomorphism_id [constructor] (G : Group) : G →g G :=
|
|
homomorphism.mk id (λg h, idp)
|
|
|
|
infixr ` ∘g `:75 := homomorphism_compose
|
|
notation 1 := homomorphism_id _
|
|
|
|
structure isomorphism (A B : Group) :=
|
|
(to_hom : A →g B)
|
|
(is_equiv_to_hom : is_equiv to_hom)
|
|
|
|
infix ` ≃g `:25 := isomorphism
|
|
attribute isomorphism.to_hom [coercion]
|
|
attribute isomorphism.is_equiv_to_hom [instance]
|
|
|
|
definition equiv_of_isomorphism [constructor] (φ : G₁ ≃g G₂) : G₁ ≃ G₂ :=
|
|
equiv.mk φ _
|
|
|
|
definition to_ginv [constructor] (φ : G₁ ≃g G₂) : G₂ →g G₁ :=
|
|
homomorphism.mk φ⁻¹
|
|
abstract begin
|
|
intro g₁ g₂, apply eq_of_fn_eq_fn' φ,
|
|
rewrite [respect_mul, +right_inv φ]
|
|
end end
|
|
|
|
definition isomorphism.refl [refl] [constructor] (G : Group) : G ≃g G :=
|
|
isomorphism.mk 1 !is_equiv_id
|
|
|
|
definition isomorphism.symm [symm] [constructor] (φ : G₁ ≃g G₂) : G₂ ≃g G₁ :=
|
|
isomorphism.mk (to_ginv φ) !is_equiv_inv
|
|
|
|
definition isomorphism.trans [trans] [constructor] (φ : G₁ ≃g G₂) (ψ : G₂ ≃g G₃)
|
|
: G₁ ≃g G₃ :=
|
|
isomorphism.mk (ψ ∘g φ) !is_equiv_compose
|
|
|
|
postfix `⁻¹ᵍ`:(max + 1) := isomorphism.symm
|
|
infixl ` ⬝g `:75 := isomorphism.trans
|
|
|
|
-- TODO
|
|
-- definition Group_univalence (G₁ G₂ : Group) : (G₁ ≃g G₂) ≃ (G₁ = G₂) :=
|
|
-- begin
|
|
-- fapply equiv.MK,
|
|
-- { intro φ, fapply Group_eq, apply equiv_of_isomorphism φ, apply respect_mul},
|
|
-- { intro p, apply transport _ p, reflexivity},
|
|
-- { intro p, induction p, esimp, },
|
|
-- { }
|
|
-- end
|
|
|
|
/- category of groups -/
|
|
|
|
definition precategory_group [constructor] : precategory Group :=
|
|
precategory.mk homomorphism
|
|
@homomorphism_compose
|
|
@homomorphism_id
|
|
(λG₁ G₂ G₃ G₄ φ₃ φ₂ φ₁, homomorphism_eq (λg, idp))
|
|
(λG₁ G₂ φ, homomorphism_eq (λg, idp))
|
|
(λG₁ G₂ φ, homomorphism_eq (λg, idp))
|
|
|
|
-- TODO
|
|
-- definition category_group : category Group :=
|
|
-- category.mk precategory_group
|
|
-- begin
|
|
-- intro G₁ G₂,
|
|
-- fapply adjointify,
|
|
-- { intro φ, fapply Group_eq, },
|
|
-- { },
|
|
-- { }
|
|
-- end
|
|
|
|
end group
|