Spectral/higher_groups.hlean
2018-01-23 12:44:05 -05:00

255 lines
9.2 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Ulrik Buchholtz, Egbert Rijke and Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ulrik Buchholtz, Egbert Rijke, Floris van Doorn
Formalization of the higher groups paper
-/
import .pointed_pi
open eq is_conn pointed is_trunc trunc equiv is_equiv trunc_index susp nat algebra
prod.ops sigma sigma.ops
namespace higher_group
set_option pp.binder_types true
universe variable u
/- We require that the carrier has a point (preserved by the equivalence) -/
structure Grp (n k : ) : Type := /- (n,k)Grp, denoted here as [n;k]Grp -/
(car : ptrunctype.{u} n)
(B : pconntype.{u} (k.-1)) /- this is Bᵏ -/
(e : car ≃* Ω[k] B)
structure InfGrp (k : ) : Type := /- (∞,k)Grp, denoted here as [∞;k]Grp -/
(car : pType.{u})
(B : pconntype.{u} (k.-1)) /- this is Bᵏ -/
(e : car ≃* Ω[k] B)
structure ωGrp (n : ) := /- (n,ω)Grp, denoted here as [n;ω]Grp -/
(B : Π(k : ), (n+k)-Type*[k.-1])
(e : Π(k : ), B k ≃* Ω (B (k+1)))
attribute InfGrp.car Grp.car [coercion]
variables {n k l : }
notation `[`:95 n:0 `; ` k `]Grp`:0 := Grp n k
notation `[∞; `:95 k:0 `]Grp`:0 := InfGrp k
notation `[`:95 n:0 `;ω]Grp`:0 := ωGrp n
open Grp
open InfGrp (renaming B→iB e→ie)
open ωGrp (renaming B→oB e→oe)
/- some basic properties -/
lemma is_trunc_B' (G : [n;k]Grp) : is_trunc (k+n) (B G) :=
begin
apply is_trunc_of_is_trunc_loopn,
exact is_trunc_equiv_closed _ (e G),
exact _
end
lemma is_trunc_B (G : [n;k]Grp) : is_trunc (n+k) (B G) :=
transport (λm, is_trunc m (B G)) (add.comm k n) (is_trunc_B' G)
local attribute [instance] is_trunc_B
definition Grp.sigma_char (n k : ) :
Grp.{u} n k ≃ Σ(B : pconntype.{u} (k.-1)), Σ(X : ptrunctype.{u} n), X ≃* Ω[k] B :=
begin
fapply equiv.MK,
{ intro G, exact ⟨B G, G, e G⟩ },
{ intro v, exact Grp.mk v.2.1 v.1 v.2.2 },
{ intro v, induction v with v₁ v₂, induction v₂, reflexivity },
{ intro G, induction G, reflexivity },
end
definition Grp_equiv (n k : ) : [n;k]Grp ≃ (n+k)-Type*[k.-1] :=
Grp.sigma_char n k ⬝e
sigma_equiv_of_is_embedding_left_contr
ptruncconntype.to_pconntype
(is_embedding_ptruncconntype_to_pconntype (n+k) (k.-1))
begin
intro X,
apply is_trunc_equiv_closed_rev -2,
{ apply sigma_equiv_sigma_right, intro B',
refine _ ⬝e (ptrunctype_eq_equiv B' (ptrunctype.mk (Ω[k] X) !is_trunc_loopn_nat pt))⁻¹ᵉ,
assert lem : Π(A : n-Type*) (B : Type*) (H : is_trunc n B),
(A ≃* B) ≃ (A ≃* (ptrunctype.mk B H pt)),
{ intro A B'' H, induction B'', reflexivity },
apply lem }
end
begin
intro B' H, apply fiber.mk (ptruncconntype.mk B' (is_trunc_B (Grp.mk H.1 B' H.2)) pt _),
induction B' with G' B' e', reflexivity
end
definition Grp_equiv_pequiv {n k : } (G : [n;k]Grp) : Grp_equiv n k G ≃* B G :=
by reflexivity
definition Grp_eq_equiv {n k : } (G H : [n;k]Grp) : (G = H :> [n;k]Grp) ≃ (B G ≃* B H) :=
eq_equiv_fn_eq_of_equiv (Grp_equiv n k) _ _ ⬝e !ptruncconntype_eq_equiv
definition Grp_eq {n k : } {G H : [n;k]Grp} (e : B G ≃* B H) : G = H :=
(Grp_eq_equiv G H)⁻¹ᵉ e
/- similar properties for [∞;k]Grp -/
definition InfGrp.sigma_char (k : ) :
InfGrp.{u} k ≃ Σ(B : pconntype.{u} (k.-1)), Σ(X : pType.{u}), X ≃* Ω[k] B :=
begin
fapply equiv.MK,
{ intro G, exact ⟨iB G, G, ie G⟩ },
{ intro v, exact InfGrp.mk v.2.1 v.1 v.2.2 },
{ intro v, induction v with v₁ v₂, induction v₂, reflexivity },
{ intro G, induction G, reflexivity },
end
definition InfGrp_equiv (k : ) : [∞;k]Grp ≃ Type*[k.-1] :=
InfGrp.sigma_char k ⬝e
@sigma_equiv_of_is_contr_right _ _
(λX, is_trunc_equiv_closed_rev -2 (sigma_equiv_sigma_right (λB', !pType_eq_equiv⁻¹ᵉ)))
definition InfGrp_equiv_pequiv {k : } (G : [∞;k]Grp) : InfGrp_equiv k G ≃* iB G :=
by reflexivity
definition InfGrp_eq_equiv {k : } (G H : [∞;k]Grp) : (G = H :> [∞;k]Grp) ≃ (iB G ≃* iB H) :=
eq_equiv_fn_eq_of_equiv (InfGrp_equiv k) _ _ ⬝e !pconntype_eq_equiv
definition InfGrp_eq {k : } {G H : [∞;k]Grp} (e : iB G ≃* iB H) : G = H :=
(InfGrp_eq_equiv G H)⁻¹ᵉ e
-- maybe to do: ωGrp ≃ Σ(X : spectrum), is_sconn n X
/- Constructions -/
definition Decat (G : [n+1;k]Grp) : [n;k]Grp :=
Grp.mk (ptrunctype.mk (ptrunc n G) _ pt) (pconntype.mk (ptrunc (n + k) (B G)) _ pt)
abstract begin
refine ptrunc_pequiv_ptrunc n (e G) ⬝e* _,
symmetry, exact !loopn_ptrunc_pequiv_nat
end end
definition Disc (G : [n;k]Grp) : [n+1;k]Grp :=
Grp.mk (ptrunctype.mk G (show is_trunc (n.+1) G, from _) pt) (B G) (e G)
definition Decat_adjoint_Disc (G : [n+1;k]Grp) (H : [n;k]Grp) :
ppmap (B (Decat G)) (B H) ≃* ppmap (B G) (B (Disc H)) :=
pmap_ptrunc_pequiv (n + k) (B G) (B H)
definition Decat_adjoint_Disc_natural {G G' : [n+1;k]Grp} {H H' : [n;k]Grp}
(eG : B G' ≃* B G) (eH : B H ≃* B H') :
psquare (Decat_adjoint_Disc G H)
(Decat_adjoint_Disc G' H')
(ppcompose_left eH ∘* ppcompose_right (ptrunc_functor _ eG))
(ppcompose_left eH ∘* ppcompose_right eG) :=
sorry
definition Decat_Disc (G : [n;k]Grp) : Decat (Disc G) = G :=
Grp_eq !ptrunc_pequiv
definition InfDecat (n : ) (G : [∞;k]Grp) : [n;k]Grp :=
Grp.mk (ptrunctype.mk (ptrunc n G) _ pt) (pconntype.mk (ptrunc (n + k) (iB G)) _ pt)
abstract begin
refine ptrunc_pequiv_ptrunc n (ie G) ⬝e* _,
symmetry, exact !loopn_ptrunc_pequiv_nat
end end
definition InfDisc (n : ) (G : [n;k]Grp) : [∞;k]Grp :=
InfGrp.mk G (B G) (e G)
definition InfDecat_adjoint_InfDisc (G : [∞;k]Grp) (H : [n;k]Grp) :
ppmap (B (InfDecat n G)) (B H) ≃* ppmap (iB G) (iB (InfDisc n H)) :=
pmap_ptrunc_pequiv (n + k) (iB G) (B H)
/- To do: naturality -/
definition InfDecat_InfDisc (G : [n;k]Grp) : InfDecat n (InfDisc n G) = G :=
Grp_eq !ptrunc_pequiv
definition Deloop (G : [n;k+1]Grp) : [n+1;k]Grp :=
have is_conn k (B G), from is_conn_pconntype (B G),
have is_trunc (n + (k + 1)) (B G), from is_trunc_B G,
have is_trunc ((n + 1) + k) (B G), from transport (λ(n : ), is_trunc n _) (succ_add n k)⁻¹ this,
Grp.mk (ptrunctype.mk (Ω[k] (B G)) !is_trunc_loopn_nat pt)
(pconntype.mk (B G) !is_conn_of_is_conn_succ pt)
(pequiv_of_equiv erfl idp)
definition Loop (G : [n+1;k]Grp) : [n;k+1]Grp :=
Grp.mk (ptrunctype.mk (Ω G) !is_trunc_loop_nat pt)
(connconnect k (B G))
(loop_pequiv_loop (e G) ⬝e* (loopn_connect k (B G))⁻¹ᵉ*)
definition Deloop_adjoint_Loop (G : [n;k+1]Grp) (H : [n+1;k]Grp) :
ppmap (B (Deloop G)) (B H) ≃* ppmap (B G) (B (Loop H)) :=
(connect_intro_pequiv _ !is_conn_pconntype)⁻¹ᵉ* /- still a sorry here -/
definition Loop_Deloop (G : [n;k+1]Grp) : Loop (Deloop G) = G :=
Grp_eq (connect_pequiv (is_conn_pconntype (B G)))
/- to do: adjunction, and Loop ∘ Deloop = id -/
definition Forget (G : [n;k+1]Grp) : [n;k]Grp :=
have is_conn k (B G), from !is_conn_pconntype,
Grp.mk G (pconntype.mk (Ω (B G)) !is_conn_loop pt)
abstract begin
refine e G ⬝e* !loopn_succ_in
end end
definition Stabilize (G : [n;k]Grp) : [n;k+1]Grp :=
have is_conn k (susp (B G)), from !is_conn_susp,
have Hconn : is_conn k (ptrunc (n + k + 1) (susp (B G))), from !is_conn_ptrunc,
Grp.mk (ptrunctype.mk (ptrunc n (Ω[k+1] (susp (B G)))) _ pt)
(pconntype.mk (ptrunc (n+k+1) (susp (B G))) Hconn pt)
abstract begin
refine !loopn_ptrunc_pequiv⁻¹ᵉ* ⬝e* _,
apply loopn_pequiv_loopn,
exact ptrunc_change_index !of_nat_add_of_nat _
end end
/- to do: adjunction -/
definition ωForget (k : ) (G : [n;ω]Grp) : [n;k]Grp :=
have is_trunc (n + k) (oB G k), from _,
have is_trunc n (Ω[k] (oB G k)), from !is_trunc_loopn_nat,
Grp.mk (ptrunctype.mk (Ω[k] (oB G k)) _ pt) (oB G k) (pequiv_of_equiv erfl idp)
definition nStabilize (H : k ≤ l) (G : Grp.{u} n k) : Grp.{u} n l :=
begin
induction H with l H IH, exact G, exact Stabilize IH
end
lemma Stabilize_pequiv (H : k ≥ n + 2) (G : [n;k]Grp) : B G ≃* Ω (B (Stabilize G)) :=
sorry
theorem stabilization (H : k ≥ n + 2) : is_equiv (@Stabilize n k) :=
sorry
definition ωGrp.mk_le {n : } (k₀ : )
(B : Π⦃k : ℕ⦄, k₀ ≤ k → (n+k)-Type*[k.-1])
(e : Π⦃k : ℕ⦄ (H : k₀ ≤ k), B H ≃* Ω (B (le.step H))) : [n;ω]Grp :=
sorry
/- for l ≤ k we want to define it as Ω[k-l] (B G),
for H : l ≥ k we want to define it as nStabilize H G -/
definition ωStabilize_of_le (H : k ≥ n + 2) (G : [n;k]Grp) : [n;ω]Grp :=
ωGrp.mk_le k (λl H', Grp_equiv n l (nStabilize H' G))
(λl H', Stabilize_pequiv (le.trans H H') (nStabilize H' G))
definition ωStabilize (G : [n;k]Grp) : [n;ω]Grp :=
ωStabilize_of_le !le_max_left (nStabilize !le_max_right G)
/- to do: adjunction (and ωStabilize ∘ ωForget =?= id) -/
definition is_trunc_Grp (n k : ) : is_trunc (n + 1) [n;k]Grp :=
begin
apply @is_trunc_equiv_closed_rev _ _ (n + 1) (Grp_equiv n k),
apply is_trunc_succ_intro, intros X Y,
apply @is_trunc_equiv_closed_rev _ _ _ (ptruncconntype_eq_equiv X Y),
apply @is_trunc_equiv_closed_rev _ _ _ (pequiv.sigma_char_equiv' X Y),
apply @is_trunc_subtype (X →* Y) (λ f, trunctype.mk' -1 (is_equiv f)),
apply is_trunc_pmap_of_is_conn X k.-2 (n.-1) (n + k) Y,
{ apply le_of_eq, exact (sub_one_add_plus_two_sub_one n k)⁻¹ ⬝ !add_plus_two_comm },
{ exact _ }
end
end higher_group