584 lines
26 KiB
Text
584 lines
26 KiB
Text
-- Authors: Floris van Doorn
|
||
-- in collaboration with Egbert, Stefano, Robin, Ulrik
|
||
|
||
/- the adjunction between the smash product and pointed maps -/
|
||
import .smash .susp ..pointed ..move_to_lib
|
||
|
||
open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge is_trunc
|
||
function unit sigma susp sphere
|
||
|
||
namespace smash
|
||
|
||
variables {A A' B B' C C' X X' : Type*}
|
||
|
||
/- we start by defining the unit of the adjunction -/
|
||
definition pinl [constructor] (A : Type*) {B : Type*} (b : B) : A →* A ∧ B :=
|
||
begin
|
||
fapply pmap.mk,
|
||
{ intro a, exact smash.mk a b },
|
||
{ exact gluer' b pt }
|
||
end
|
||
|
||
definition pinl_phomotopy {b b' : B} (p : b = b') : pinl A b ~* pinl A b' :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ exact ap010 (pmap.to_fun ∘ pinl A) p },
|
||
{ induction p, apply idp_con }
|
||
end
|
||
|
||
definition smash_pmap_unit_pt [constructor] (A B : Type*)
|
||
: pinl A pt ~* pconst A (A ∧ B) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, exact gluel' a pt },
|
||
{ rexact con.right_inv (gluel pt) ⬝ (con.right_inv (gluer pt))⁻¹ }
|
||
end
|
||
|
||
/- We chose an unfortunate order of arguments, but it might be bothersome to change it-/
|
||
definition smash_pmap_unit [constructor] (A B : Type*) : B →* ppmap A (A ∧ B) :=
|
||
begin
|
||
fapply pmap.mk,
|
||
{ exact pinl A },
|
||
{ apply eq_of_phomotopy, exact smash_pmap_unit_pt A B }
|
||
end
|
||
|
||
/- The unit is natural in the second argument -/
|
||
definition smash_functor_pid_pinl' [constructor] {A B C : Type*} (b : B) (f : B →* C) :
|
||
pinl A (f b) ~* smash_functor (pid A) f ∘* pinl A b :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, reflexivity },
|
||
{ refine !idp_con ⬝ _,
|
||
induction C with C c₀, induction f with f f₀, esimp at *,
|
||
induction f₀, rexact functor_gluer'2 (@id A) f b pt }
|
||
end
|
||
|
||
definition smash_pmap_unit_pt_natural [constructor] (f : B →* C) :
|
||
smash_functor_pid_pinl' pt f ⬝*
|
||
pwhisker_left (smash_functor (pid A) f) (smash_pmap_unit_pt A B) ⬝*
|
||
pcompose_pconst (smash_functor (pid A) f) =
|
||
pinl_phomotopy (respect_pt f) ⬝* smash_pmap_unit_pt A C :=
|
||
begin
|
||
induction f with f f₀, induction C with C c₀, esimp at *,
|
||
induction f₀, refine _ ⬝ !refl_trans⁻¹,
|
||
refine !trans_refl ⬝ _,
|
||
fapply phomotopy_eq',
|
||
{ intro a, refine !idp_con ⬝ _,
|
||
rexact functor_gluel'2 (pid A) f a pt },
|
||
{ refine whisker_right_idp _ ⬝ph _,
|
||
refine ap (λx, _ ⬝ x) _ ⬝ph _,
|
||
rotate 1, rexact (functor_gluel'2_same (pid A) f pt),
|
||
refine whisker_right _ !idp_con ⬝pv _,
|
||
refine !con.assoc⁻¹ ⬝ph _, apply whisker_bl,
|
||
refine whisker_left _ !to_homotopy_pt_mk ⬝pv _,
|
||
refine !con.assoc⁻¹ ⬝ whisker_right _ _ ⬝pv _,
|
||
rotate 1, esimp, apply whisker_left_idp_con,
|
||
refine !con.assoc ⬝pv _, apply whisker_tl,
|
||
refine whisker_right _ !idp_con ⬝pv _,
|
||
refine whisker_right _ !whisker_right_idp ⬝pv _,
|
||
refine whisker_right _ (!idp_con ⬝ !ap02_con) ⬝ !con.assoc ⬝pv _,
|
||
apply whisker_tl,
|
||
apply vdeg_square,
|
||
refine whisker_right _ !ap_inv ⬝ _, apply inv_con_eq_of_eq_con,
|
||
rexact functor_gluer'2_same (pmap_of_map id (Point A)) (pmap_of_map f pt) pt }
|
||
end
|
||
|
||
definition smash_pmap_unit_natural (f : B →* C) :
|
||
smash_pmap_unit A C ∘* f ~*
|
||
ppcompose_left (smash_functor (pid A) f) ∘* smash_pmap_unit A B :=
|
||
begin
|
||
induction A with A a₀, induction B with B b₀, induction C with C c₀,
|
||
induction f with f f₀, esimp at *, induction f₀, fapply phomotopy_mk_ppmap,
|
||
{ esimp [pcompose], intro b, exact smash_functor_pid_pinl' b (pmap_of_map f b₀) },
|
||
{ refine ap (λx, _ ⬝* phomotopy_of_eq x) !respect_pt_pcompose ⬝ _
|
||
⬝ ap phomotopy_of_eq !respect_pt_pcompose⁻¹,
|
||
esimp, refine _ ⬝ ap phomotopy_of_eq !idp_con⁻¹,
|
||
refine _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹,
|
||
refine ap (λx, _ ⬝* phomotopy_of_eq (x ⬝ _)) !pcompose_left_eq_of_phomotopy ⬝ _,
|
||
refine ap (λx, _ ⬝* x) (!phomotopy_of_eq_con ⬝
|
||
!phomotopy_of_eq_of_phomotopy ◾** !phomotopy_of_eq_of_phomotopy ⬝ !trans_refl) ⬝ _,
|
||
refine _ ⬝ smash_pmap_unit_pt_natural (pmap_of_map f b₀) ⬝ _,
|
||
{ exact !trans_refl⁻¹ },
|
||
{ exact !refl_trans }}
|
||
end
|
||
|
||
/- The counit -/
|
||
definition smash_pmap_counit_map [unfold 3] (af : A ∧ (ppmap A B)) : B :=
|
||
begin
|
||
induction af with a f a f,
|
||
{ exact f a },
|
||
{ exact pt },
|
||
{ exact pt },
|
||
{ reflexivity },
|
||
{ exact respect_pt f }
|
||
end
|
||
|
||
definition smash_pmap_counit [constructor] (A B : Type*) : A ∧ (ppmap A B) →* B :=
|
||
begin
|
||
fapply pmap.mk,
|
||
{ exact smash_pmap_counit_map },
|
||
{ reflexivity }
|
||
end
|
||
|
||
/- The counit is natural in both arguments -/
|
||
definition smash_pmap_counit_natural_right (g : B →* C) : g ∘* smash_pmap_counit A B ~*
|
||
smash_pmap_counit A C ∘* smash_functor (pid A) (ppcompose_left g) :=
|
||
begin
|
||
symmetry,
|
||
fapply phomotopy.mk,
|
||
{ intro af, induction af with a f a f,
|
||
{ reflexivity },
|
||
{ exact (respect_pt g)⁻¹ },
|
||
{ exact (respect_pt g)⁻¹ },
|
||
{ apply eq_pathover,
|
||
refine ap_compose (smash_pmap_counit A C) _ _ ⬝ph _ ⬝hp (ap_compose g _ _)⁻¹,
|
||
refine ap02 _ !functor_gluel ⬝ph _ ⬝hp ap02 _ !elim_gluel⁻¹,
|
||
refine !ap_con ⬝ !ap_compose'⁻¹ ◾ !elim_gluel ⬝ph _⁻¹ʰ,
|
||
apply square_of_eq_bot, refine !idp_con ⬝ _,
|
||
induction C with C c₀, induction g with g g₀, esimp at *,
|
||
induction g₀, refine ap02 _ !eq_of_phomotopy_refl },
|
||
{ apply eq_pathover,
|
||
refine ap_compose (smash_pmap_counit A C) _ _ ⬝ph _ ⬝hp (ap_compose g _ _)⁻¹,
|
||
refine ap02 _ !functor_gluer ⬝ph _ ⬝hp ap02 _ !elim_gluer⁻¹,
|
||
refine !ap_con ⬝ !ap_compose'⁻¹ ◾ !elim_gluer ⬝ph _,
|
||
refine !idp_con ⬝ph _, apply square_of_eq,
|
||
refine !idp_con ⬝ !con_inv_cancel_right⁻¹ }},
|
||
{ refine !idp_con ⬝ !idp_con ⬝ _, refine _ ⬝ !ap_compose',
|
||
refine _ ⬝ (ap_is_constant respect_pt _)⁻¹, refine !idp_con⁻¹ }
|
||
end
|
||
|
||
definition smash_pmap_counit_natural_left (g : A →* A') :
|
||
smash_pmap_counit A' B ∘* g ∧→ (pid (ppmap A' B)) ~*
|
||
smash_pmap_counit A B ∘* (pid A) ∧→ (ppcompose_right g) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro af, induction af with a f a f,
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ apply eq_pathover, apply hdeg_square,
|
||
refine ap_compose !smash_pmap_counit _ _ ⬝ ap02 _ (!elim_gluel ⬝ !idp_con) ⬝
|
||
!elim_gluel ⬝ _,
|
||
refine (ap_compose !smash_pmap_counit _ _ ⬝ ap02 _ !elim_gluel ⬝ !ap_con ⬝
|
||
!ap_compose'⁻¹ ◾ !elim_gluel ⬝ !con_idp ⬝ _)⁻¹,
|
||
refine !to_fun_eq_of_phomotopy ⬝ _, reflexivity },
|
||
{ apply eq_pathover, apply hdeg_square,
|
||
refine ap_compose !smash_pmap_counit _ _ ⬝ ap02 _ !elim_gluer ⬝ !ap_con ⬝
|
||
!ap_compose'⁻¹ ◾ !elim_gluer ⬝ _,
|
||
refine (ap_compose !smash_pmap_counit _ _ ⬝ ap02 _ !elim_gluer ⬝ !ap_con ⬝
|
||
!ap_compose'⁻¹ ◾ !elim_gluer ⬝ !idp_con)⁻¹ }},
|
||
{ refine !idp_con ⬝ _, refine !ap_compose'⁻¹ ⬝ _ ⬝ !ap_ap011⁻¹, esimp,
|
||
refine !to_fun_eq_of_phomotopy ⬝ _, exact !ap_constant⁻¹, }
|
||
end
|
||
|
||
/- The unit-counit laws -/
|
||
definition smash_pmap_unit_counit (A B : Type*) :
|
||
smash_pmap_counit A (A ∧ B) ∘* smash_functor (pid A) (smash_pmap_unit A B) ~* pid (A ∧ B) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro x,
|
||
induction x with a b a b,
|
||
{ reflexivity },
|
||
{ exact gluel pt },
|
||
{ exact gluer pt },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose smash_pmap_counit_map _ _ ⬝ ap02 _ !functor_gluel ⬝ph _,
|
||
refine !ap_con ⬝ !ap_compose'⁻¹ ◾ !elim_gluel ⬝ph _,
|
||
refine !ap_eq_of_phomotopy ⬝ph _,
|
||
apply square_of_eq, refine !idp_con ⬝ !inv_con_cancel_right⁻¹ },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose smash_pmap_counit_map _ _ ⬝ ap02 _ !functor_gluer ⬝ph _,
|
||
refine !ap_con ⬝ !ap_compose'⁻¹ ◾ !elim_gluer ⬝ph _,
|
||
refine !idp_con ⬝ph _,
|
||
apply square_of_eq, refine !idp_con ⬝ !inv_con_cancel_right⁻¹ }},
|
||
{ refine _ ⬝ !ap_compose', refine _ ⬝ (ap_is_constant respect_pt _)⁻¹,
|
||
rexact (con.right_inv (gluer pt))⁻¹ }
|
||
end
|
||
|
||
definition smash_pmap_counit_unit_pt [constructor] (f : A →* B) :
|
||
smash_pmap_counit A B ∘* pinl A f ~* f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, reflexivity },
|
||
{ refine !idp_con ⬝ !elim_gluer'⁻¹ }
|
||
end
|
||
|
||
definition smash_pmap_counit_unit (A B : Type*) :
|
||
ppcompose_left (smash_pmap_counit A B) ∘* smash_pmap_unit A (ppmap A B) ~* pid (ppmap A B) :=
|
||
begin
|
||
fapply phomotopy_mk_ppmap,
|
||
{ intro f, exact smash_pmap_counit_unit_pt f },
|
||
{ refine !trans_refl ⬝ _,
|
||
refine _ ⬝ ap (λx, phomotopy_of_eq (x ⬝ _)) !pcompose_left_eq_of_phomotopy⁻¹,
|
||
refine _ ⬝ !phomotopy_of_eq_con⁻¹,
|
||
refine _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹ ◾** !phomotopy_of_eq_of_phomotopy⁻¹,
|
||
refine _ ⬝ !trans_refl⁻¹,
|
||
fapply phomotopy_eq,
|
||
{ intro a, esimp, refine !elim_gluel'⁻¹ },
|
||
{ esimp, refine whisker_right _ !whisker_right_idp ⬝ _ ⬝ !idp_con⁻¹,
|
||
refine whisker_right _ !elim_gluel'_same⁻² ⬝ _ ⬝ !elim_gluer'_same⁻¹⁻²,
|
||
apply inv_con_eq_of_eq_con, refine !idp_con ⬝ _, esimp,
|
||
refine _ ⬝ !ap02_con ⬝ whisker_left _ !ap_inv,
|
||
refine !whisker_right_idp ⬝ _,
|
||
exact !idp_con }}
|
||
end
|
||
|
||
/- The underlying (unpointed) functions of the equivalence A →* (B →* C) ≃* A ∧ B →* C) -/
|
||
definition smash_elim [constructor] (f : A →* ppmap B C) : B ∧ A →* C :=
|
||
smash_pmap_counit B C ∘* smash_functor (pid B) f
|
||
|
||
definition smash_elim_inv [constructor] (g : A ∧ B →* C) : B →* ppmap A C :=
|
||
ppcompose_left g ∘* smash_pmap_unit A B
|
||
|
||
/- They are inverses, constant on the constant function and natural -/
|
||
definition smash_elim_left_inv (f : A →* ppmap B C) : smash_elim_inv (smash_elim f) ~* f :=
|
||
begin
|
||
refine !pwhisker_right !ppcompose_left_pcompose ⬝* _,
|
||
refine !passoc ⬝* _,
|
||
refine !pwhisker_left !smash_pmap_unit_natural⁻¹* ⬝* _,
|
||
refine !passoc⁻¹* ⬝* _,
|
||
refine !pwhisker_right !smash_pmap_counit_unit ⬝* _,
|
||
apply pid_pcompose
|
||
end
|
||
|
||
definition smash_elim_right_inv (g : A ∧ B →* C) : smash_elim (smash_elim_inv g) ~* g :=
|
||
begin
|
||
refine !pwhisker_left !smash_functor_pid_pcompose ⬝* _,
|
||
refine !passoc⁻¹* ⬝* _,
|
||
refine !pwhisker_right !smash_pmap_counit_natural_right⁻¹* ⬝* _,
|
||
refine !passoc ⬝* _,
|
||
refine !pwhisker_left !smash_pmap_unit_counit ⬝* _,
|
||
apply pcompose_pid
|
||
end
|
||
|
||
definition smash_elim_pconst (A B C : Type*) :
|
||
smash_elim (pconst B (ppmap A C)) ~* pconst (A ∧ B) C :=
|
||
begin
|
||
refine pwhisker_left _ (smash_functor_pconst_right (pid A)) ⬝* !pcompose_pconst
|
||
end
|
||
|
||
definition smash_elim_inv_pconst (A B C : Type*) :
|
||
smash_elim_inv (pconst (A ∧ B) C) ~* pconst B (ppmap A C) :=
|
||
begin
|
||
fapply phomotopy_mk_ppmap,
|
||
{ intro f, apply pconst_pcompose },
|
||
{ esimp, refine !trans_refl ⬝ _,
|
||
refine _ ⬝ (!phomotopy_of_eq_con ⬝ (ap phomotopy_of_eq !pcompose_left_eq_of_phomotopy ⬝
|
||
!phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy)⁻¹,
|
||
apply pconst_pcompose_phomotopy_pconst }
|
||
end
|
||
|
||
definition smash_elim_natural_right {A B C C' : Type*} (f : C →* C')
|
||
(g : B →* ppmap A C) : f ∘* smash_elim g ~* smash_elim (ppcompose_left f ∘* g) :=
|
||
begin
|
||
refine _ ⬝* pwhisker_left _ !smash_functor_pid_pcompose⁻¹*,
|
||
refine !passoc⁻¹* ⬝* pwhisker_right _ _ ⬝* !passoc,
|
||
apply smash_pmap_counit_natural_right
|
||
end
|
||
|
||
definition smash_elim_inv_natural_right {A B C C' : Type*} (f : C →* C')
|
||
(g : A ∧ B →* C) : ppcompose_left f ∘* smash_elim_inv g ~* smash_elim_inv (f ∘* g) :=
|
||
begin
|
||
refine !passoc⁻¹* ⬝* pwhisker_right _ _,
|
||
exact !ppcompose_left_pcompose⁻¹*
|
||
end
|
||
|
||
definition smash_elim_natural_left (f : A →* A') (g : B →* B')
|
||
(h : B' →* ppmap A' C) : smash_elim h ∘* (f ∧→ g) ~* smash_elim (ppcompose_right f ∘* h ∘* g) :=
|
||
begin
|
||
refine !smash_functor_pid_pcompose ⬝ph* _,
|
||
refine _ ⬝v* !smash_pmap_counit_natural_left,
|
||
refine smash_functor_psquare (pvrefl f) !pid_pcompose⁻¹*
|
||
end
|
||
|
||
definition smash_elim_phomotopy {f f' : A →* ppmap B C}
|
||
(p : f ~* f') : smash_elim f ~* smash_elim f' :=
|
||
begin
|
||
apply pwhisker_left,
|
||
exact smash_functor_phomotopy phomotopy.rfl p
|
||
end
|
||
|
||
definition smash_elim_inv_phomotopy {f f' : A ∧ B →* C}
|
||
(p : f ~* f') : smash_elim_inv f ~* smash_elim_inv f' :=
|
||
pwhisker_right _ (ppcompose_left_phomotopy p)
|
||
|
||
definition smash_elim_eq_of_phomotopy {f f' : A →* ppmap B C}
|
||
(p : f ~* f') : ap smash_elim (eq_of_phomotopy p) = eq_of_phomotopy (smash_elim_phomotopy p) :=
|
||
begin
|
||
induction p using phomotopy_rec_idp,
|
||
refine ap02 _ !eq_of_phomotopy_refl ⬝ _,
|
||
refine !eq_of_phomotopy_refl⁻¹ ⬝ _,
|
||
apply ap eq_of_phomotopy,
|
||
refine _ ⬝ ap (pwhisker_left _) !smash_functor_phomotopy_refl⁻¹,
|
||
refine !pwhisker_left_refl⁻¹
|
||
end
|
||
|
||
definition smash_elim_inv_eq_of_phomotopy {f f' : A ∧ B →* C} (p : f ~* f') :
|
||
ap smash_elim_inv (eq_of_phomotopy p) = eq_of_phomotopy (smash_elim_inv_phomotopy p) :=
|
||
begin
|
||
induction p using phomotopy_rec_idp,
|
||
refine ap02 _ !eq_of_phomotopy_refl ⬝ _,
|
||
refine !eq_of_phomotopy_refl⁻¹ ⬝ _,
|
||
apply ap eq_of_phomotopy,
|
||
refine _ ⬝ ap (pwhisker_right _) !ppcompose_left_phomotopy_refl⁻¹,
|
||
refine !pwhisker_right_refl⁻¹
|
||
end
|
||
|
||
/- The pointed maps of the equivalence A →* (B →* C) ≃* A ∧ B →* C -/
|
||
definition smash_pelim [constructor] (A B C : Type*) : ppmap A (ppmap B C) →* ppmap (B ∧ A) C :=
|
||
ppcompose_left (smash_pmap_counit B C) ∘* smash_functor_right B A (ppmap B C)
|
||
|
||
definition smash_pelim_inv [constructor] (A B C : Type*) :
|
||
ppmap (B ∧ A) C →* ppmap A (ppmap B C) :=
|
||
pmap.mk smash_elim_inv (eq_of_phomotopy !smash_elim_inv_pconst)
|
||
|
||
/- The forward function is natural in all three arguments -/
|
||
definition smash_pelim_natural_right (f : C →* C') :
|
||
psquare (smash_pelim A B C) (smash_pelim A B C')
|
||
(ppcompose_left (ppcompose_left f)) (ppcompose_left f) :=
|
||
smash_functor_right_natural_right (ppcompose_left f) ⬝h*
|
||
ppcompose_left_psquare (smash_pmap_counit_natural_right f)
|
||
|
||
definition smash_pelim_natural_left (B C : Type*) (f : A' →* A) :
|
||
psquare (smash_pelim A B C) (smash_pelim A' B C)
|
||
(ppcompose_right f) (ppcompose_right (pid B ∧→ f)) :=
|
||
smash_functor_right_natural_middle f ⬝h* !ppcompose_left_ppcompose_right
|
||
|
||
definition smash_pelim_natural_middle (A C : Type*) (g : B' →* B) :
|
||
psquare (smash_pelim A B C) (smash_pelim A B' C)
|
||
(ppcompose_left (ppcompose_right g)) (ppcompose_right (g ∧→ pid A)) :=
|
||
pwhisker_tl _ !ppcompose_left_ppcompose_right ⬝*
|
||
(!smash_functor_right_natural_left⁻¹* ⬝pv*
|
||
smash_functor_right_natural_right (ppcompose_right g) ⬝h*
|
||
ppcompose_left_psquare !smash_pmap_counit_natural_left)
|
||
|
||
definition smash_pelim_natural_lm (C : Type*) (f : A' →* A) (g : B' →* B) :
|
||
psquare (smash_pelim A B C) (smash_pelim A' B' C)
|
||
(ppcompose_left (ppcompose_right g) ∘* ppcompose_right f) (ppcompose_right (g ∧→ f)) :=
|
||
smash_pelim_natural_left B C f ⬝v* smash_pelim_natural_middle A' C g ⬝hp*
|
||
ppcompose_right_phomotopy proof !smash_functor_split qed ⬝* !ppcompose_right_pcompose
|
||
|
||
/- The equivalence (note: the forward function of smash_adjoint_pmap is smash_pelim_inv) -/
|
||
definition is_equiv_smash_elim [constructor] (A B C : Type*) : is_equiv (@smash_elim A B C) :=
|
||
begin
|
||
fapply adjointify,
|
||
{ exact smash_elim_inv },
|
||
{ intro g, apply eq_of_phomotopy, exact smash_elim_right_inv g },
|
||
{ intro f, apply eq_of_phomotopy, exact smash_elim_left_inv f }
|
||
end
|
||
|
||
definition smash_adjoint_pmap_inv [constructor] (A B C : Type*) :
|
||
ppmap B (ppmap A C) ≃* ppmap (A ∧ B) C :=
|
||
pequiv_of_pmap (smash_pelim B A C) (is_equiv_smash_elim B A C)
|
||
|
||
definition smash_adjoint_pmap [constructor] (A B C : Type*) :
|
||
ppmap (A ∧ B) C ≃* ppmap B (ppmap A C) :=
|
||
(smash_adjoint_pmap_inv A B C)⁻¹ᵉ*
|
||
|
||
/- The naturality of the equivalence is a direct consequence of the earlier naturalities -/
|
||
definition smash_adjoint_pmap_natural_right_pt {A B C C' : Type*} (f : C →* C') (g : A ∧ B →* C) :
|
||
ppcompose_left f ∘* smash_adjoint_pmap A B C g ~* smash_adjoint_pmap A B C' (f ∘* g) :=
|
||
begin
|
||
refine !passoc⁻¹* ⬝* pwhisker_right _ _,
|
||
exact !ppcompose_left_pcompose⁻¹*
|
||
end
|
||
|
||
definition smash_adjoint_pmap_inv_natural_right_pt {A B C C' : Type*} (f : C →* C')
|
||
(g : B →* ppmap A C) : f ∘* (smash_adjoint_pmap A B C)⁻¹ᵉ* g ~*
|
||
(smash_adjoint_pmap A B C')⁻¹ᵉ* (ppcompose_left f ∘* g) :=
|
||
begin
|
||
refine _ ⬝* pwhisker_left _ !smash_functor_pid_pcompose⁻¹*,
|
||
refine !passoc⁻¹* ⬝* pwhisker_right _ _ ⬝* !passoc,
|
||
apply smash_pmap_counit_natural_right
|
||
end
|
||
|
||
definition smash_adjoint_pmap_inv_natural_right [constructor] {A B C C' : Type*} (f : C →* C') :
|
||
ppcompose_left f ∘* smash_adjoint_pmap_inv A B C ~*
|
||
smash_adjoint_pmap_inv A B C' ∘* ppcompose_left (ppcompose_left f) :=
|
||
smash_pelim_natural_right f
|
||
|
||
definition smash_adjoint_pmap_natural_right [constructor] {A B C C' : Type*} (f : C →* C') :
|
||
ppcompose_left (ppcompose_left f) ∘* smash_adjoint_pmap A B C ~*
|
||
smash_adjoint_pmap A B C' ∘* ppcompose_left f :=
|
||
(smash_adjoint_pmap_inv_natural_right f)⁻¹ʰ*
|
||
|
||
definition smash_adjoint_pmap_natural_lm (C : Type*) (f : A →* A') (g : B →* B') :
|
||
psquare (smash_adjoint_pmap A' B' C) (smash_adjoint_pmap A B C)
|
||
(ppcompose_right (f ∧→ g)) (ppcompose_left (ppcompose_right f) ∘* ppcompose_right g) :=
|
||
proof (!smash_pelim_natural_lm)⁻¹ʰ* qed
|
||
|
||
/- Corollary: associativity of smash -/
|
||
|
||
definition smash_assoc_elim_equiv (A B C X : Type*) :
|
||
ppmap (A ∧ (B ∧ C)) X ≃* ppmap ((A ∧ B) ∧ C) X :=
|
||
calc
|
||
ppmap (A ∧ (B ∧ C)) X ≃* ppmap (B ∧ C) (ppmap A X) : smash_adjoint_pmap A (B ∧ C) X
|
||
... ≃* ppmap C (ppmap B (ppmap A X)) : smash_adjoint_pmap B C (ppmap A X)
|
||
... ≃* ppmap C (ppmap (A ∧ B) X) : pequiv_ppcompose_left (smash_adjoint_pmap_inv A B X)
|
||
... ≃* ppmap ((A ∧ B) ∧ C) X : smash_adjoint_pmap_inv (A ∧ B) C X
|
||
|
||
definition smash_assoc_elim_equiv_fn (A B C X : Type*) (f : A ∧ (B ∧ C) →* X) :
|
||
(A ∧ B) ∧ C →* X :=
|
||
smash_elim (ppcompose_left (smash_adjoint_pmap A B X)⁻¹ᵉ* (smash_elim_inv (smash_elim_inv f)))
|
||
|
||
definition smash_assoc_elim_natural_right (A B C : Type*) (f : X →* X') :
|
||
psquare (smash_assoc_elim_equiv A B C X) (smash_assoc_elim_equiv A B C X')
|
||
(ppcompose_left f) (ppcompose_left f) :=
|
||
!smash_adjoint_pmap_natural_right ⬝h*
|
||
!smash_adjoint_pmap_natural_right ⬝h*
|
||
ppcompose_left_psquare !smash_adjoint_pmap_inv_natural_right ⬝h*
|
||
!smash_adjoint_pmap_inv_natural_right
|
||
|
||
/-
|
||
We could prove the following two pointed homotopies by applying smash_assoc_elim_natural_right
|
||
to g, but we give a more explicit proof
|
||
-/
|
||
definition smash_assoc_elim_natural_right_pt {A B C X X' : Type*} (f : X →* X')
|
||
(g : A ∧ (B ∧ C) →* X) :
|
||
f ∘* smash_assoc_elim_equiv A B C X g ~* smash_assoc_elim_equiv A B C X' (f ∘* g) :=
|
||
begin
|
||
refine !smash_adjoint_pmap_inv_natural_right_pt ⬝* _,
|
||
apply smash_elim_phomotopy,
|
||
refine !passoc⁻¹* ⬝* _,
|
||
refine pwhisker_right _ !smash_adjoint_pmap_inv_natural_right ⬝* _,
|
||
refine !passoc ⬝* _,
|
||
apply pwhisker_left,
|
||
refine !smash_adjoint_pmap_natural_right_pt ⬝* _,
|
||
apply smash_elim_inv_phomotopy,
|
||
refine !smash_adjoint_pmap_natural_right_pt
|
||
end
|
||
|
||
definition smash_assoc_elim_inv_natural_right_pt {A B C X X' : Type*} (f : X →* X')
|
||
(g : (A ∧ B) ∧ C →* X) :
|
||
f ∘* (smash_assoc_elim_equiv A B C X)⁻¹ᵉ* g ~* (smash_assoc_elim_equiv A B C X')⁻¹ᵉ* (f ∘* g) :=
|
||
begin
|
||
refine !smash_adjoint_pmap_inv_natural_right_pt ⬝* _,
|
||
apply smash_elim_phomotopy,
|
||
refine !passoc⁻¹* ⬝* _,
|
||
refine pwhisker_right _ !smash_pmap_counit_natural_right ⬝* _,
|
||
refine !passoc ⬝* _,
|
||
apply pwhisker_left,
|
||
refine !smash_functor_pid_pcompose⁻¹* ⬝* _,
|
||
apply smash_functor_phomotopy phomotopy.rfl,
|
||
refine !passoc⁻¹* ⬝* _,
|
||
refine pwhisker_right _ (smash_adjoint_pmap_natural_right f) ⬝* _,
|
||
refine !passoc ⬝* _,
|
||
apply pwhisker_left,
|
||
apply smash_elim_inv_natural_right
|
||
end
|
||
|
||
definition smash_assoc (A B C : Type*) : A ∧ (B ∧ C) ≃* (A ∧ B) ∧ C :=
|
||
begin
|
||
fapply pequiv.MK,
|
||
{ exact !smash_assoc_elim_equiv⁻¹ᵉ* !pid },
|
||
{ exact !smash_assoc_elim_equiv !pid },
|
||
{ refine !smash_assoc_elim_inv_natural_right_pt ⬝* _,
|
||
refine pap !smash_assoc_elim_equiv⁻¹ᵉ* !pcompose_pid ⬝* _,
|
||
apply phomotopy_of_eq, apply to_left_inv !smash_assoc_elim_equiv },
|
||
{ refine !smash_assoc_elim_natural_right_pt ⬝* _,
|
||
refine pap !smash_assoc_elim_equiv !pcompose_pid ⬝* _,
|
||
apply phomotopy_of_eq, apply to_right_inv !smash_assoc_elim_equiv }
|
||
end
|
||
|
||
/- the associativity of smash is natural in all arguments -/
|
||
definition smash_assoc_elim_natural_left (X : Type*)
|
||
(f : A →* A') (g : B →* B') (h : C →* C') :
|
||
psquare (smash_assoc_elim_equiv A' B' C' X) (smash_assoc_elim_equiv A B C X)
|
||
(ppcompose_right (f ∧→ g ∧→ h)) (ppcompose_right ((f ∧→ g) ∧→ h)) :=
|
||
begin
|
||
refine !smash_adjoint_pmap_natural_lm ⬝h* _ ⬝h*
|
||
(!ppcompose_left_ppcompose_right ⬝v* ppcompose_left_psquare !smash_pelim_natural_lm) ⬝h*
|
||
!smash_pelim_natural_lm,
|
||
refine !ppcompose_left_ppcompose_right⁻¹* ⬝ph* _,
|
||
refine _ ⬝hp* pwhisker_right _ (ppcompose_left_phomotopy !ppcompose_left_ppcompose_right⁻¹* ⬝*
|
||
!ppcompose_left_pcompose) ⬝* !passoc ⬝* pwhisker_left _ !ppcompose_left_ppcompose_right⁻¹* ⬝*
|
||
!passoc⁻¹*,
|
||
refine _ ⬝v* !smash_adjoint_pmap_natural_lm,
|
||
refine !smash_adjoint_pmap_natural_right
|
||
end
|
||
|
||
definition smash_assoc_natural (f : A →* A') (g : B →* B') (h : C →* C') :
|
||
psquare (smash_assoc A B C) (smash_assoc A' B' C') (f ∧→ (g ∧→ h)) ((f ∧→ g) ∧→ h) :=
|
||
begin
|
||
refine !smash_assoc_elim_inv_natural_right_pt ⬝* _,
|
||
refine pap !smash_assoc_elim_equiv⁻¹ᵉ* (!pcompose_pid ⬝* !pid_pcompose⁻¹*) ⬝* _,
|
||
rexact phomotopy_of_eq ((smash_assoc_elim_natural_left _ f g h)⁻¹ʰ* !pid)⁻¹
|
||
end
|
||
|
||
/- Corollary 2: smashing with a suspension -/
|
||
definition smash_susp_elim_equiv (A B X : Type*) :
|
||
ppmap (A ∧ susp B) X ≃* ppmap (susp (A ∧ B)) X :=
|
||
calc
|
||
ppmap (A ∧ susp B) X ≃* ppmap (susp B) (ppmap A X) : smash_adjoint_pmap A (susp B) X
|
||
... ≃* ppmap B (Ω (ppmap A X)) : susp_adjoint_loop B (ppmap A X)
|
||
... ≃* ppmap B (ppmap A (Ω X)) : pequiv_ppcompose_left (loop_ppmap_commute A X)
|
||
... ≃* ppmap (A ∧ B) (Ω X) : smash_adjoint_pmap A B (Ω X)
|
||
... ≃* ppmap (susp (A ∧ B)) X : susp_adjoint_loop (A ∧ B) X
|
||
|
||
definition smash_susp_elim_natural_right (A B : Type*) (f : X →* X') :
|
||
psquare (smash_susp_elim_equiv A B X) (smash_susp_elim_equiv A B X')
|
||
(ppcompose_left f) (ppcompose_left f) :=
|
||
smash_adjoint_pmap_natural_right f ⬝h*
|
||
susp_adjoint_loop_natural_right (ppcompose_left f) ⬝h*
|
||
ppcompose_left_psquare (loop_pmap_commute_natural_right A f) ⬝h*
|
||
(smash_adjoint_pmap_natural_right (Ω→ f))⁻¹ʰ* ⬝h*
|
||
(susp_adjoint_loop_natural_right f)⁻¹ʰ*
|
||
|
||
definition smash_susp_elim_natural_left (X : Type*) (f : A' →* A) (g : B' →* B) :
|
||
psquare (smash_susp_elim_equiv A B X) (smash_susp_elim_equiv A' B' X)
|
||
(ppcompose_right (f ∧→ susp_functor g)) (ppcompose_right (susp_functor (f ∧→ g))) :=
|
||
begin
|
||
refine smash_adjoint_pmap_natural_lm X f (susp_functor g) ⬝h*
|
||
_ ⬝h* _ ⬝h*
|
||
(smash_adjoint_pmap_natural_lm (Ω X) f g)⁻¹ʰ* ⬝h*
|
||
(susp_adjoint_loop_natural_left (f ∧→ g))⁻¹ʰ*,
|
||
rotate 2,
|
||
exact !ppcompose_left_ppcompose_right ⬝v* ppcompose_left_psquare (loop_pmap_commute_natural_left X f),
|
||
exact susp_adjoint_loop_natural_left g ⬝v* susp_adjoint_loop_natural_right (ppcompose_right f)
|
||
end
|
||
|
||
definition smash_susp (A B : Type*) : A ∧ ⅀ B ≃* ⅀(A ∧ B) :=
|
||
begin
|
||
fapply pequiv.MK,
|
||
{ exact !smash_susp_elim_equiv⁻¹ᵉ* !pid },
|
||
{ exact !smash_susp_elim_equiv !pid },
|
||
{ refine phomotopy_of_eq (!smash_susp_elim_natural_right⁻¹ʰ* _) ⬝* _,
|
||
refine pap !smash_susp_elim_equiv⁻¹ᵉ* !pcompose_pid ⬝* _,
|
||
apply phomotopy_of_eq, apply to_left_inv !smash_susp_elim_equiv },
|
||
{ refine phomotopy_of_eq (!smash_susp_elim_natural_right _) ⬝* _,
|
||
refine pap !smash_susp_elim_equiv !pcompose_pid ⬝* _,
|
||
apply phomotopy_of_eq, apply to_right_inv !smash_susp_elim_equiv }
|
||
end
|
||
|
||
definition smash_susp_natural (f : A →* A') (g : B →* B') :
|
||
psquare (smash_susp A B) (smash_susp A' B') (f ∧→ (susp_functor g)) (susp_functor (f ∧→ g)) :=
|
||
begin
|
||
refine phomotopy_of_eq (!smash_susp_elim_natural_right⁻¹ʰ* _) ⬝* _,
|
||
refine pap !smash_susp_elim_equiv⁻¹ᵉ* (!pcompose_pid ⬝* !pid_pcompose⁻¹*) ⬝* _,
|
||
rexact phomotopy_of_eq ((smash_susp_elim_natural_left _ f g)⁻¹ʰ* !pid)⁻¹
|
||
end
|
||
|
||
print axioms smash_susp_natural
|
||
definition smash_iterate_susp (n : ℕ) (A B : Type*) :
|
||
A ∧ iterate_susp n B ≃* iterate_susp n (A ∧ B) :=
|
||
begin
|
||
induction n with n e,
|
||
{ reflexivity },
|
||
{ exact smash_susp A (iterate_susp n B) ⬝e* susp_pequiv e }
|
||
end
|
||
|
||
definition smash_sphere (A : Type*) (n : ℕ) : A ∧ sphere n ≃* iterate_susp n A :=
|
||
smash_pequiv pequiv.rfl (sphere_pequiv_iterate_susp n) ⬝e*
|
||
smash_iterate_susp n A pbool ⬝e*
|
||
iterate_susp_pequiv n (smash_pbool_pequiv A)
|
||
|
||
definition smash_pcircle (A : Type*) : A ∧ pcircle ≃* susp A :=
|
||
smash_sphere A 1
|
||
|
||
definition sphere_smash_sphere (n m : ℕ) : sphere n ∧ sphere m ≃* sphere (n+m) :=
|
||
smash_sphere (sphere n) m ⬝e*
|
||
iterate_susp_pequiv m (sphere_pequiv_iterate_susp n) ⬝e*
|
||
iterate_susp_iterate_susp_rev m n pbool ⬝e*
|
||
(sphere_pequiv_iterate_susp (n + m))⁻¹ᵉ*
|
||
|
||
end smash
|