273 lines
11 KiB
Text
273 lines
11 KiB
Text
-- Authors: Floris van Doorn
|
||
|
||
/-
|
||
In this file we define the smash type. This is the cofiber of the map
|
||
wedge A B → A × B
|
||
However, we define it (equivalently) as the pushout of the maps A + B → 2 and A + B → A × B.
|
||
-/
|
||
|
||
import homotopy.circle homotopy.join types.pointed ..move_to_lib
|
||
|
||
open bool pointed eq equiv is_equiv sum bool prod unit circle
|
||
|
||
namespace smash
|
||
|
||
variables {A B : Type*}
|
||
|
||
section
|
||
open pushout
|
||
|
||
definition prod_of_sum [unfold 3] (u : A + B) : A × B :=
|
||
by induction u with a b; exact (a, pt); exact (pt, b)
|
||
|
||
definition bool_of_sum [unfold 3] (u : A + B) : bool :=
|
||
by induction u; exact ff; exact tt
|
||
|
||
definition smash' (A B : Type*) : Type := pushout (@prod_of_sum A B) (@bool_of_sum A B)
|
||
protected definition mk (a : A) (b : B) : smash' A B := inl (a, b)
|
||
|
||
definition smash [constructor] (A B : Type*) : Type* :=
|
||
pointed.MK (smash' A B) (smash.mk pt pt)
|
||
|
||
definition auxl : smash A B := inr ff
|
||
definition auxr : smash A B := inr tt
|
||
definition gluel (a : A) : smash.mk a pt = auxl :> smash A B := glue (inl a)
|
||
definition gluer (b : B) : smash.mk pt b = auxr :> smash A B := glue (inr b)
|
||
|
||
end
|
||
|
||
definition gluel' (a a' : A) : smash.mk a pt = smash.mk a' pt :> smash A B :=
|
||
gluel a ⬝ (gluel a')⁻¹
|
||
definition gluer' (b b' : B) : smash.mk pt b = smash.mk pt b' :> smash A B :=
|
||
gluer b ⬝ (gluer b')⁻¹
|
||
definition glue (a : A) (b : B) : smash.mk a pt = smash.mk pt b :=
|
||
gluel' a pt ⬝ gluer' pt b
|
||
|
||
definition glue_pt_left (b : B) : glue (Point A) b = gluer' pt b :=
|
||
whisker_right !con.right_inv _ ⬝ !idp_con
|
||
|
||
definition glue_pt_right (a : A) : glue a (Point B) = gluel' a pt :=
|
||
proof whisker_left _ !con.right_inv qed
|
||
|
||
definition ap_mk_left {a a' : A} (p : a = a') : ap (λa, smash.mk a (Point B)) p = gluel' a a' :=
|
||
by induction p; exact !con.right_inv⁻¹
|
||
|
||
definition ap_mk_right {b b' : B} (p : b = b') : ap (smash.mk (Point A)) p = gluer' b b' :=
|
||
by induction p; exact !con.right_inv⁻¹
|
||
|
||
protected definition rec {P : smash A B → Type} (Pmk : Πa b, P (smash.mk a b))
|
||
(Pl : P auxl) (Pr : P auxr) (Pgl : Πa, Pmk a pt =[gluel a] Pl)
|
||
(Pgr : Πb, Pmk pt b =[gluer b] Pr) (x : smash' A B) : P x :=
|
||
begin
|
||
induction x with x b u,
|
||
{ induction x with a b, exact Pmk a b },
|
||
{ induction b, exact Pl, exact Pr },
|
||
{ induction u: esimp,
|
||
{ apply Pgl },
|
||
{ apply Pgr }}
|
||
end
|
||
|
||
-- a rec which is easier to prove, but with worse computational properties
|
||
protected definition rec' {P : smash A B → Type} (Pmk : Πa b, P (smash.mk a b))
|
||
(Pg : Πa b, Pmk a pt =[glue a b] Pmk pt b) (x : smash' A B) : P x :=
|
||
begin
|
||
induction x using smash.rec,
|
||
{ apply Pmk },
|
||
{ exact gluel pt ▸ Pmk pt pt },
|
||
{ exact gluer pt ▸ Pmk pt pt },
|
||
{ refine change_path _ (Pg a pt ⬝o !pathover_tr),
|
||
refine whisker_right !glue_pt_right _ ⬝ _, esimp, refine !con.assoc ⬝ _,
|
||
apply whisker_left, apply con.left_inv },
|
||
{ refine change_path _ ((Pg pt b)⁻¹ᵒ ⬝o !pathover_tr),
|
||
refine whisker_right !glue_pt_left⁻² _ ⬝ _,
|
||
refine whisker_right !inv_con_inv_right _ ⬝ _, refine !con.assoc ⬝ _,
|
||
apply whisker_left, apply con.left_inv }
|
||
end
|
||
|
||
theorem rec_gluel {P : smash A B → Type} {Pmk : Πa b, P (smash.mk a b)}
|
||
{Pl : P auxl} {Pr : P auxr} (Pgl : Πa, Pmk a pt =[gluel a] Pl)
|
||
(Pgr : Πb, Pmk pt b =[gluer b] Pr) (a : A) :
|
||
apd (smash.rec Pmk Pl Pr Pgl Pgr) (gluel a) = Pgl a :=
|
||
!pushout.rec_glue
|
||
|
||
theorem rec_gluer {P : smash A B → Type} {Pmk : Πa b, P (smash.mk a b)}
|
||
{Pl : P auxl} {Pr : P auxr} (Pgl : Πa, Pmk a pt =[gluel a] Pl)
|
||
(Pgr : Πb, Pmk pt b =[gluer b] Pr) (b : B) :
|
||
apd (smash.rec Pmk Pl Pr Pgl Pgr) (gluer b) = Pgr b :=
|
||
!pushout.rec_glue
|
||
|
||
theorem rec_glue {P : smash A B → Type} {Pmk : Πa b, P (smash.mk a b)}
|
||
{Pl : P auxl} {Pr : P auxr} (Pgl : Πa, Pmk a pt =[gluel a] Pl)
|
||
(Pgr : Πb, Pmk pt b =[gluer b] Pr) (a : A) (b : B) :
|
||
apd (smash.rec Pmk Pl Pr Pgl Pgr) (glue a b) =
|
||
(Pgl a ⬝o (Pgl pt)⁻¹ᵒ) ⬝o (Pgr pt ⬝o (Pgr b)⁻¹ᵒ) :=
|
||
by rewrite [↑glue, ↑gluel', ↑gluer', +apd_con, +apd_inv, +rec_gluel, +rec_gluer]
|
||
|
||
protected definition elim {P : Type} (Pmk : Πa b, P) (Pl Pr : P)
|
||
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (x : smash' A B) : P :=
|
||
smash.rec Pmk Pl Pr (λa, pathover_of_eq _ (Pgl a)) (λb, pathover_of_eq _ (Pgr b)) x
|
||
|
||
-- an elim which is easier to prove, but with worse computational properties
|
||
protected definition elim' {P : Type} (Pmk : Πa b, P) (Pg : Πa b, Pmk a pt = Pmk pt b)
|
||
(x : smash' A B) : P :=
|
||
smash.rec' Pmk (λa b, pathover_of_eq _ (Pg a b)) x
|
||
|
||
theorem elim_gluel {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
|
||
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a : A) :
|
||
ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluel a) = Pgl a :=
|
||
begin
|
||
apply eq_of_fn_eq_fn_inv !(pathover_constant (@gluel A B a)),
|
||
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑smash.elim,rec_gluel],
|
||
end
|
||
|
||
theorem elim_gluer {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
|
||
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (b : B) :
|
||
ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluer b) = Pgr b :=
|
||
begin
|
||
apply eq_of_fn_eq_fn_inv !(pathover_constant (@gluer A B b)),
|
||
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑smash.elim,rec_gluer],
|
||
end
|
||
|
||
theorem elim_glue {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
|
||
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a : A) (b : B) :
|
||
ap (smash.elim Pmk Pl Pr Pgl Pgr) (glue a b) = (Pgl a ⬝ (Pgl pt)⁻¹) ⬝ (Pgr pt ⬝ (Pgr b)⁻¹) :=
|
||
by rewrite [↑glue, ↑gluel', ↑gluer', +ap_con, +ap_inv, +elim_gluel, +elim_gluer]
|
||
|
||
end smash
|
||
open smash
|
||
attribute smash.mk auxl auxr [constructor]
|
||
attribute smash.rec smash.elim [unfold 9] [recursor 9]
|
||
attribute smash.rec' smash.elim' [unfold 6]
|
||
|
||
namespace smash
|
||
|
||
variables {A B : Type*}
|
||
|
||
definition of_smash_pbool [unfold 2] (x : smash A pbool) : A :=
|
||
begin
|
||
induction x,
|
||
{ induction b, exact pt, exact a },
|
||
{ exact pt },
|
||
{ exact pt },
|
||
{ reflexivity },
|
||
{ induction b: reflexivity }
|
||
end
|
||
|
||
definition smash_pbool_equiv [constructor] (A : Type*) : smash A pbool ≃* A :=
|
||
begin
|
||
fapply pequiv_of_equiv,
|
||
{ fapply equiv.MK,
|
||
{ exact of_smash_pbool },
|
||
{ intro a, exact smash.mk a tt },
|
||
{ intro a, reflexivity },
|
||
{ exact abstract begin intro x, induction x using smash.rec',
|
||
{ induction b, exact (glue a tt)⁻¹, reflexivity },
|
||
{ apply eq_pathover_id_right, induction b: esimp,
|
||
{ refine ap02 _ !glue_pt_right ⬝ph _,
|
||
refine ap_compose (λx, smash.mk x _) _ _ ⬝ph _,
|
||
refine ap02 _ (!ap_con ⬝ (!elim_gluel ◾ (!ap_inv ⬝ !elim_gluel⁻²))) ⬝ph _,
|
||
apply hinverse, apply square_of_eq,
|
||
esimp, refine (!glue_pt_right ◾ !glue_pt_left)⁻¹ },
|
||
{ apply square_of_eq, refine !con.left_inv ⬝ _, esimp, symmetry,
|
||
refine ap_compose (λx, smash.mk x _) _ _ ⬝ _,
|
||
exact ap02 _ !elim_glue }} end end }},
|
||
{ reflexivity }
|
||
end
|
||
|
||
/- smash A (susp B) = susp (smash A B) <- this follows from associativity and smash with S¹-/
|
||
|
||
/- To prove: Σ(X × Y) ≃ ΣX ∨ ΣY ∨ Σ(X ∧ Y) (notation means suspension, wedge, smash),
|
||
and both are equivalent to the reduced join -/
|
||
|
||
/- To prove: commutative, associative -/
|
||
|
||
/- smash A S¹ = susp A -/
|
||
open susp
|
||
|
||
definition psusp_of_smash_pcircle [unfold 2] (x : smash A S¹*) : psusp A :=
|
||
begin
|
||
induction x,
|
||
{ induction b, exact pt, exact merid a ⬝ (merid pt)⁻¹ },
|
||
{ exact pt },
|
||
{ exact pt },
|
||
{ reflexivity },
|
||
{ induction b, reflexivity, apply eq_pathover_constant_right, apply hdeg_square,
|
||
exact !elim_loop ⬝ !con.right_inv }
|
||
end
|
||
|
||
definition smash_pcircle_of_psusp [unfold 2] (x : psusp A) : smash A S¹* :=
|
||
begin
|
||
induction x,
|
||
{ exact pt },
|
||
{ exact pt },
|
||
{ exact gluel' pt a ⬝ ap (smash.mk a) loop ⬝ gluel' a pt },
|
||
end
|
||
|
||
exit -- the definitions below compile, but take a long time to do so and have sorry's in them
|
||
definition smash_pcircle_of_psusp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) :
|
||
smash_pcircle_of_psusp (psusp_of_smash_pcircle (smash.mk a x)) = smash.mk a x :=
|
||
begin
|
||
induction x,
|
||
{ exact gluel' pt a },
|
||
{ exact abstract begin apply eq_pathover,
|
||
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
|
||
refine ap02 _ (elim_loop north (merid a ⬝ (merid pt)⁻¹)) ⬝ph _,
|
||
refine !ap_con ⬝ (!elim_merid ◾ (!ap_inv ⬝ !elim_merid⁻²)) ⬝ph _,
|
||
-- make everything below this a lemma defined by path induction?
|
||
apply square_of_eq, rewrite [+con.assoc], apply whisker_left, apply whisker_left,
|
||
symmetry, apply con_eq_of_eq_inv_con, esimp, apply con_eq_of_eq_con_inv,
|
||
refine _⁻² ⬝ !con_inv, refine _ ⬝ !con.assoc,
|
||
refine _ ⬝ whisker_right !inv_con_cancel_right⁻¹ _, refine _ ⬝ !con.right_inv⁻¹,
|
||
refine !con.right_inv ◾ _, refine _ ◾ !con.right_inv,
|
||
refine !ap_mk_right ⬝ !con.right_inv end end }
|
||
end
|
||
|
||
definition smash_pcircle_of_psusp_of_smash_pcircle_gluer_base (b : S¹*)
|
||
: square (smash_pcircle_of_psusp_of_smash_pcircle_pt (Point A) b)
|
||
(gluer pt)
|
||
(ap smash_pcircle_of_psusp (ap (λ a, psusp_of_smash_pcircle a) (gluer b)))
|
||
(gluer b) :=
|
||
begin
|
||
refine ap02 _ !elim_gluer ⬝ph _,
|
||
induction b,
|
||
{ apply square_of_eq, exact whisker_right !con.right_inv _ },
|
||
{ apply square_pathover', exact sorry }
|
||
end
|
||
|
||
definition smash_pcircle_pequiv [constructor] (A : Type*) : smash A S¹* ≃* psusp A :=
|
||
begin
|
||
fapply pequiv_of_equiv,
|
||
{ fapply equiv.MK,
|
||
{ exact psusp_of_smash_pcircle },
|
||
{ exact smash_pcircle_of_psusp },
|
||
{ exact abstract begin intro x, induction x,
|
||
{ reflexivity },
|
||
{ exact merid pt },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose psusp_of_smash_pcircle _ _ ⬝ph _,
|
||
refine ap02 _ !elim_merid ⬝ph _,
|
||
rewrite [↑gluel', +ap_con, +ap_inv, -ap_compose'],
|
||
refine (_ ◾ _⁻² ◾ _ ◾ (_ ◾ _⁻²)) ⬝ph _,
|
||
rotate 5, do 2 apply elim_gluel, esimp, apply elim_loop, do 2 apply elim_gluel,
|
||
refine idp_con (merid a ⬝ (merid (Point A))⁻¹) ⬝ph _,
|
||
apply square_of_eq, refine !idp_con ⬝ _⁻¹, apply inv_con_cancel_right } end end },
|
||
{ intro x, induction x using smash.rec,
|
||
{ exact smash_pcircle_of_psusp_of_smash_pcircle_pt a b },
|
||
{ exact gluel pt },
|
||
{ exact gluer pt },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
|
||
refine ap02 _ !elim_gluel ⬝ph _,
|
||
esimp, apply whisker_rt, exact vrfl },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
|
||
refine ap02 _ !elim_gluer ⬝ph _,
|
||
induction b,
|
||
{ apply square_of_eq, exact whisker_right !con.right_inv _ },
|
||
{ exact sorry}
|
||
}}},
|
||
{ reflexivity }
|
||
end
|
||
|
||
end smash
|
||
-- (X × A) → Y ≃ X → A → Y
|