Spectral/homotopy/cohomology.hlean

362 lines
16 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Reduced cohomology of spectra and cohomology theories
-/
import .spectrum ..algebra.arrow_group .fwedge ..choice .pushout ..algebra.product_group
open eq spectrum int trunc pointed EM group algebra circle sphere nat EM.ops equiv susp is_trunc
function fwedge cofiber bool lift sigma is_equiv choice pushout algebra unit pi
namespace cohomology
/- The cohomology of X with coefficients in Y is
trunc 0 (A →* Ω[2] (Y (n+2)))
In the file arrow_group (in algebra) we construct the group structure on this type.
-/
definition cohomology (X : Type*) (Y : spectrum) (n : ) : AbGroup :=
AbGroup_trunc_pmap X (Y (n+2))
definition ordinary_cohomology [reducible] (X : Type*) (G : AbGroup) (n : ) : AbGroup :=
cohomology X (EM_spectrum G) n
definition ordinary_cohomology_Z [reducible] (X : Type*) (n : ) : AbGroup :=
ordinary_cohomology X ag n
definition unreduced_cohomology (X : Type) (Y : spectrum) (n : ) : AbGroup :=
cohomology X₊ Y n
definition unreduced_ordinary_cohomology [reducible] (X : Type) (G : AbGroup) (n : ) : AbGroup :=
unreduced_cohomology X (EM_spectrum G) n
definition unreduced_ordinary_cohomology_Z [reducible] (X : Type) (n : ) : AbGroup :=
unreduced_ordinary_cohomology X ag n
definition parametrized_cohomology {X : Type*} (Y : X → spectrum) (n : ) : AbGroup :=
AbGroup_trunc_ppi (λx, Y x (n+2))
definition ordinary_parametrized_cohomology [reducible] {X : Type*} (G : X → AbGroup) (n : ) :
AbGroup :=
parametrized_cohomology (λx, EM_spectrum (G x)) n
definition unreduced_parametrized_cohomology {X : Type} (Y : X → spectrum) (n : ) : AbGroup :=
parametrized_cohomology (add_point_spectrum Y) n
definition unreduced_ordinary_parametrized_cohomology [reducible] {X : Type} (G : X → AbGroup)
(n : ) : AbGroup :=
unreduced_parametrized_cohomology (λx, EM_spectrum (G x)) n
notation `H^` n `[`:0 X:0 `, ` Y:0 `]`:0 := cohomology X Y n
notation `oH^` n `[`:0 X:0 `, ` G:0 `]`:0 := ordinary_cohomology X G n
notation `H^` n `[`:0 X:0 `]`:0 := ordinary_cohomology_Z X n
notation `uH^` n `[`:0 X:0 `, ` Y:0 `]`:0 := unreduced_cohomology X Y n
notation `uoH^` n `[`:0 X:0 `, ` G:0 `]`:0 := unreduced_ordinary_cohomology X G n
notation `uH^` n `[`:0 X:0 `]`:0 := unreduced_ordinary_cohomology_Z X n
notation `pH^` n `[`:0 binders `, ` r:(scoped Y, parametrized_cohomology Y n) `]`:0 := r
notation `opH^` n `[`:0 binders `, ` r:(scoped G, ordinary_parametrized_cohomology G n) `]`:0 := r
notation `upH^` n `[`:0 binders `, ` r:(scoped Y, unreduced_parametrized_cohomology Y n) `]`:0 := r
notation `uopH^` n `[`:0 binders `, ` r:(scoped G, unreduced_ordinary_parametrized_cohomology G n) `]`:0 := r
-- check H^3[S¹*,EM_spectrum ag]
-- check H^3[S¹*]
-- check pH^3[(x : S¹*), EM_spectrum ag]
/- an alternate definition of cohomology -/
definition cohomology_equiv_shomotopy_group_sp_cotensor (X : Type*) (Y : spectrum) (n : ) :
H^n[X, Y] ≃ πₛ[-n] (sp_cotensor X Y) :=
trunc_equiv_trunc 0 (!pfunext ⬝e loop_pequiv_loop !pfunext ⬝e loopn_pequiv_loopn 2
(pequiv_of_eq (ap (λn, ppmap X (Y n)) (add.comm n 2 ⬝ ap (add 2) !neg_neg⁻¹))))
definition cohomology_isomorphism_shomotopy_group_sp_cotensor (X : Type*) (Y : spectrum) {n m : }
(p : -m = n) : H^n[X, Y] ≃g πₛ[m] (sp_cotensor X Y) :=
sorry /- TODO FOR SSS -/
definition unreduced_cohomology_isomorphism_shomotopy_group_sp_ucotensor (X : Type) (Y : spectrum)
{n m : } (p : -m = n) : uH^n[X, Y] ≃g πₛ[m] (sp_ucotensor X Y) :=
sorry /- TODO FOR SSS -/
definition parametrized_cohomology_isomorphism_shomotopy_group_spi {X : Type*} (Y : X → spectrum)
{n m : } (p : -m = n) : pH^n[(x : X), Y x] ≃g πₛ[m] (spi X Y) :=
begin
apply isomorphism.trans (trunc_ppi_loop_isomorphism (λx, Ω (Y x (n + 2))))⁻¹ᵍ,
apply homotopy_group_isomorphism_of_pequiv 0, esimp,
have q : sub 2 m = n + 2,
from (int.add_comm (of_nat 2) (-m) ⬝ ap (λk, k + of_nat 2) p),
rewrite q, symmetry, apply ppi_loop_pequiv
end
definition unreduced_parametrized_cohomology_isomorphism_shomotopy_group_supi {X : Type}
(Y : X → spectrum) {n m : } (p : -m = n) : upH^n[(x : X), Y x] ≃g πₛ[m] (supi X Y) :=
sorry /- TODO FOR SSS -/
/- functoriality -/
definition cohomology_functor [constructor] {X X' : Type*} (f : X' →* X) (Y : spectrum)
(n : ) : cohomology X Y n →g cohomology X' Y n :=
Group_trunc_pmap_homomorphism f
definition cohomology_functor_pid (X : Type*) (Y : spectrum) (n : ) (f : H^n[X, Y]) :
cohomology_functor (pid X) Y n f = f :=
!Group_trunc_pmap_pid
definition cohomology_functor_pcompose {X X' X'' : Type*} (f : X' →* X) (g : X'' →* X')
(Y : spectrum) (n : ) (h : H^n[X, Y]) : cohomology_functor (f ∘* g) Y n h =
cohomology_functor g Y n (cohomology_functor f Y n h) :=
!Group_trunc_pmap_pcompose
definition cohomology_functor_phomotopy {X X' : Type*} {f g : X' →* X} (p : f ~* g)
(Y : spectrum) (n : ) : cohomology_functor f Y n ~ cohomology_functor g Y n :=
Group_trunc_pmap_phomotopy p
definition cohomology_functor_phomotopy_refl {X X' : Type*} (f : X' →* X) (Y : spectrum) (n : )
(x : H^n[X, Y]) : cohomology_functor_phomotopy (phomotopy.refl f) Y n x = idp :=
Group_trunc_pmap_phomotopy_refl f x
definition cohomology_functor_pconst {X X' : Type*} (Y : spectrum) (n : ) (f : H^n[X, Y]) :
cohomology_functor (pconst X' X) Y n f = 1 :=
!Group_trunc_pmap_pconst
definition cohomology_isomorphism {X X' : Type*} (f : X' ≃* X) (Y : spectrum) (n : ) :
H^n[X, Y] ≃g H^n[X', Y] :=
Group_trunc_pmap_isomorphism f
definition cohomology_isomorphism_refl (X : Type*) (Y : spectrum) (n : ) (x : H^n[X,Y]) :
cohomology_isomorphism (pequiv.refl X) Y n x = x :=
!Group_trunc_pmap_isomorphism_refl
definition cohomology_isomorphism_right (X : Type*) {Y Y' : spectrum} (e : Πn, Y n ≃* Y' n)
(n : ) : H^n[X, Y] ≃g H^n[X, Y'] :=
sorry /- TODO FOR SSS -/
definition parametrized_cohomology_isomorphism_right {X : Type*} {Y Y' : X → spectrum}
(e : Πx n, Y x n ≃* Y' x n) (n : ) : pH^n[(x : X), Y x] ≃g pH^n[(x : X), Y' x] :=
sorry /- TODO FOR SSS -/
definition unreduced_parametrized_cohomology_isomorphism_right {X : Type} {Y Y' : X → spectrum}
(e : Πx n, Y x n ≃* Y' x n) (n : ) : upH^n[(x : X), Y x] ≃g upH^n[(x : X), Y' x] :=
sorry /- TODO FOR SSS -/
definition unreduced_ordinary_parametrized_cohomology_isomorphism_right {X : Type}
{G G' : X → AbGroup} (e : Πx, G x ≃g G' x) (n : ) :
uopH^n[(x : X), G x] ≃g uopH^n[(x : X), G' x] :=
sorry /- TODO FOR SSS -/
definition ordinary_cohomology_isomorphism_right (X : Type*) {G G' : AbGroup} (e : G ≃g G')
(n : ) : oH^n[X, G] ≃g oH^n[X, G'] :=
cohomology_isomorphism_right X (EM_spectrum_pequiv e) n
definition ordinary_parametrized_cohomology_isomorphism_right {X : Type*} {G G' : X → AbGroup}
(e : Πx, G x ≃g G' x) (n : ) : opH^n[(x : X), G x] ≃g opH^n[(x : X), G' x] :=
parametrized_cohomology_isomorphism_right (λx, EM_spectrum_pequiv (e x)) n
definition uopH_isomorphism_opH {X : Type} (G : X → AbGroup) (n : ) :
uopH^n[(x : X), G x] ≃g opH^n[(x : X₊), add_point_AbGroup G x] :=
parametrized_cohomology_isomorphism_right
begin
intro x n, induction x with x,
{ symmetry, apply EM_spectrum_trivial, },
{ reflexivity }
end
n
/- suspension axiom -/
definition cohomology_psusp_2 (Y : spectrum) (n : ) :
Ω (Ω[2] (Y ((n+1)+2))) ≃* Ω[2] (Y (n+2)) :=
begin
apply loopn_pequiv_loopn 2,
exact loop_pequiv_loop (pequiv_of_eq (ap Y (add.right_comm n 1 2))) ⬝e* !equiv_glue⁻¹ᵉ*
end
definition cohomology_psusp_1 (X : Type*) (Y : spectrum) (n : ) :
psusp X →* Ω (Ω (Y (n + 1 + 2))) ≃ X →* Ω (Ω (Y (n+2))) :=
calc
psusp X →* Ω[2] (Y (n + 1 + 2)) ≃ X →* Ω (Ω[2] (Y (n + 1 + 2))) : psusp_adjoint_loop_unpointed
... ≃ X →* Ω[2] (Y (n+2)) : equiv_of_pequiv (pequiv_ppcompose_left
(cohomology_psusp_2 Y n))
definition cohomology_psusp_1_pmap_mul {X : Type*} {Y : spectrum} {n : }
(f g : psusp X →* Ω (Ω (Y (n + 1 + 2)))) : cohomology_psusp_1 X Y n (pmap_mul f g) ~*
pmap_mul (cohomology_psusp_1 X Y n f) (cohomology_psusp_1 X Y n g) :=
begin
unfold [cohomology_psusp_1],
refine pwhisker_left _ !loop_psusp_intro_pmap_mul ⬝* _,
apply pcompose_pmap_mul
end
definition cohomology_psusp_equiv (X : Type*) (Y : spectrum) (n : ) :
H^n+1[psusp X, Y] ≃ H^n[X, Y] :=
trunc_equiv_trunc _ (cohomology_psusp_1 X Y n)
definition cohomology_psusp (X : Type*) (Y : spectrum) (n : ) :
H^n+1[psusp X, Y] ≃g H^n[X, Y] :=
isomorphism_of_equiv (cohomology_psusp_equiv X Y n)
begin
intro f₁ f₂, induction f₁ with f₁, induction f₂ with f₂,
apply ap tr, apply eq_of_phomotopy, exact cohomology_psusp_1_pmap_mul f₁ f₂
end
definition cohomology_psusp_natural {X X' : Type*} (f : X →* X') (Y : spectrum) (n : ) :
cohomology_psusp X Y n ∘ cohomology_functor (psusp_functor f) Y (n+1) ~
cohomology_functor f Y n ∘ cohomology_psusp X' Y n :=
begin
refine (trunc_functor_compose _ _ _)⁻¹ʰᵗʸ ⬝hty _ ⬝hty trunc_functor_compose _ _ _,
apply trunc_functor_homotopy, intro g,
apply eq_of_phomotopy, refine _ ⬝* !passoc⁻¹*, apply pwhisker_left,
apply loop_psusp_intro_natural
end
/- exactness -/
definition cohomology_exact {X X' : Type*} (f : X →* X') (Y : spectrum) (n : ) :
is_exact_g (cohomology_functor (pcod f) Y n) (cohomology_functor f Y n) :=
is_exact_trunc_functor (cofiber_exact f)
/- additivity -/
definition additive_hom [constructor] {I : Type} (X : I → Type*) (Y : spectrum) (n : ) :
H^n[X, Y] →g Πᵍ i, H^n[X i, Y] :=
Group_pi_intro (λi, cohomology_functor (pinl i) Y n)
definition additive_equiv.{u} {I : Type.{u}} (H : has_choice 0 I) (X : I → Type*) (Y : spectrum)
(n : ) : H^n[X, Y] ≃ Πᵍ i, H^n[X i, Y] :=
trunc_fwedge_pmap_equiv H X (Ω[2] (Y (n+2)))
definition spectrum_additive {I : Type} (H : has_choice 0 I) (X : I → Type*) (Y : spectrum)
(n : ) : is_equiv (additive_hom X Y n) :=
is_equiv_of_equiv_of_homotopy (additive_equiv H X Y n) begin intro f, induction f, reflexivity end
/- dimension axiom for ordinary cohomology -/
open is_conn trunc_index
theorem EM_dimension' (G : AbGroup) (n : ) (H : n ≠ 0) :
is_contr (ordinary_cohomology pbool G n) :=
begin
apply is_conn_equiv_closed 0 !pmap_pbool_equiv⁻¹ᵉ,
apply is_conn_equiv_closed 0 !equiv_glue2⁻¹ᵉ,
cases n with n n,
{ cases n with n,
{ exfalso, apply H, reflexivity },
{ apply is_conn_of_le, apply zero_le_of_nat n, exact is_conn_EMadd1 G n, }},
{ apply is_trunc_trunc_of_is_trunc, apply @is_contr_loop_of_is_trunc (n+1) (K G 0),
apply is_trunc_of_le _ (zero_le_of_nat n) }
end
theorem EM_dimension (G : AbGroup) (n : ) (H : n ≠ 0) :
is_contr (ordinary_cohomology (plift pbool) G n) :=
@(is_trunc_equiv_closed_rev -2
(equiv_of_isomorphism (cohomology_isomorphism (pequiv_plift pbool) _ _)))
(EM_dimension' G n H)
open group algebra
theorem ordinary_cohomology_pbool (G : AbGroup) : ordinary_cohomology pbool G 0 ≃g G :=
sorry
--isomorphism_of_equiv (trunc_equiv_trunc 0 (ppmap_pbool_pequiv _ ⬝e _) ⬝e !trunc_equiv) sorry
/- cohomology theory -/
structure cohomology_theory.{u} : Type.{u+1} :=
(HH : → pType.{u} → AbGroup.{u})
(Hiso : Π(n : ) {X Y : Type*} (f : X ≃* Y), HH n Y ≃g HH n X)
(Hiso_refl : Π(n : ) (X : Type*) (x : HH n X), Hiso n pequiv.rfl x = x)
(Hh : Π(n : ) {X Y : Type*} (f : X →* Y), HH n Y →g HH n X)
(Hhomotopy : Π(n : ) {X Y : Type*} {f g : X →* Y} (p : f ~* g), Hh n f ~ Hh n g)
(Hhomotopy_refl : Π(n : ) {X Y : Type*} (f : X →* Y) (x : HH n Y),
Hhomotopy n (phomotopy.refl f) x = idp)
(Hid : Π(n : ) {X : Type*} (x : HH n X), Hh n (pid X) x = x)
(Hcompose : Π(n : ) {X Y Z : Type*} (g : Y →* Z) (f : X →* Y) (z : HH n Z),
Hh n (g ∘* f) z = Hh n f (Hh n g z))
(Hsusp : Π(n : ) (X : Type*), HH (succ n) (psusp X) ≃g HH n X)
(Hsusp_natural : Π(n : ) {X Y : Type*} (f : X →* Y),
Hsusp n X ∘ Hh (succ n) (psusp_functor f) ~ Hh n f ∘ Hsusp n Y)
(Hexact : Π(n : ) {X Y : Type*} (f : X →* Y), is_exact_g (Hh n (pcod f)) (Hh n f))
(Hadditive : Π(n : ) {I : Type.{u}} (X : I → Type*), has_choice 0 I →
is_equiv (Group_pi_intro (λi, Hh n (pinl i)) : HH n ( X) → Πᵍ i, HH n (X i)))
structure ordinary_cohomology_theory.{u} extends cohomology_theory.{u} : Type.{u+1} :=
(Hdimension : Π(n : ), n ≠ 0 → is_contr (HH n (plift pbool)))
attribute cohomology_theory.HH [coercion]
postfix `^→`:90 := cohomology_theory.Hh
open cohomology_theory
definition Hequiv (H : cohomology_theory) (n : ) {X Y : Type*} (f : X ≃* Y) : H n Y ≃ H n X :=
equiv_of_isomorphism (Hiso H n f)
definition Hsusp_neg (H : cohomology_theory) (n : ) (X : Type*) : H n (psusp X) ≃g H (pred n) X :=
isomorphism_of_eq (ap (λn, H n _) proof (sub_add_cancel n 1)⁻¹ qed) ⬝g cohomology_theory.Hsusp H (pred n) X
definition Hsusp_neg_natural (H : cohomology_theory) (n : ) {X Y : Type*} (f : X →* Y) :
Hsusp_neg H n X ∘ H ^→ n (psusp_functor f) ~ H ^→ (pred n) f ∘ Hsusp_neg H n Y :=
sorry
definition Hsusp_inv_natural (H : cohomology_theory) (n : ) {X Y : Type*} (f : X →* Y) :
H ^→ (succ n) (psusp_functor f) ∘g (Hsusp H n Y)⁻¹ᵍ ~ (Hsusp H n X)⁻¹ᵍ ∘ H ^→ n f :=
sorry
definition Hsusp_neg_inv_natural (H : cohomology_theory) (n : ) {X Y : Type*} (f : X →* Y) :
H ^→ n (psusp_functor f) ∘g (Hsusp_neg H n Y)⁻¹ᵍ ~ (Hsusp_neg H n X)⁻¹ᵍ ∘ H ^→ (pred n) f :=
sorry
definition Hadditive_equiv (H : cohomology_theory) (n : ) {I : Type} (X : I → Type*) (H2 : has_choice 0 I)
: H n ( X) ≃g Πᵍ i, H n (X i) :=
isomorphism.mk _ (Hadditive H n X H2)
definition Hlift_empty.{u} (H : cohomology_theory.{u}) (n : ) :
is_contr (H n (plift punit)) :=
let P : lift empty → Type* := lift.rec empty.elim in
let x := Hadditive H n P _ in
begin
note z := equiv.mk _ x,
refine @(is_trunc_equiv_closed_rev -2 (_ ⬝e z ⬝e _)) !is_contr_unit,
refine Hequiv H n (pequiv_punit_of_is_contr _ _ ⬝e* !pequiv_plift),
apply is_contr_fwedge_of_neg, intro y, induction y with y, exact y,
apply equiv_unit_of_is_contr, apply is_contr_pi_of_neg, intro y, induction y with y, exact y
end
definition Hempty (H : cohomology_theory.{0}) (n : ) :
is_contr (H n punit) :=
@(is_trunc_equiv_closed _ (Hequiv H n !pequiv_plift)) (Hlift_empty H n)
definition Hconst (H : cohomology_theory) (n : ) {X Y : Type*} (y : H n Y) : H ^→ n (pconst X Y) y = 1 :=
begin
refine Hhomotopy H n (pconst_pcompose (pconst X (plift punit)))⁻¹* y ⬝ _,
refine Hcompose H n _ _ y ⬝ _,
refine ap (H ^→ n _) (@eq_of_is_contr _ (Hlift_empty H n) _ 1) ⬝ _,
apply respect_one
end
-- definition Hwedge (H : cohomology_theory) (n : ) (A B : Type*) : H n (A B) ≃g H n A ×ag H n B :=
-- begin
-- refine Hiso H n (pwedge_pequiv_fwedge A B)⁻¹ᵉ* ⬝g _,
-- refine Hadditive_equiv H n _ _ ⬝g _
-- end
definition cohomology_theory_spectrum.{u} [constructor] (Y : spectrum.{u}) : cohomology_theory.{u} :=
cohomology_theory.mk
(λn A, H^n[A, Y])
(λn A B f, cohomology_isomorphism f Y n)
(λn A, cohomology_isomorphism_refl A Y n)
(λn A B f, cohomology_functor f Y n)
(λn A B f g p, cohomology_functor_phomotopy p Y n)
(λn A B f x, cohomology_functor_phomotopy_refl f Y n x)
(λn A x, cohomology_functor_pid A Y n x)
(λn A B C g f x, cohomology_functor_pcompose g f Y n x)
(λn A, cohomology_psusp A Y n)
(λn A B f, cohomology_psusp_natural f Y n)
(λn A B f, cohomology_exact f Y n)
(λn I A H, spectrum_additive H A Y n)
-- set_option pp.universes true
-- set_option pp.abbreviations false
-- print cohomology_theory_spectrum
-- print EM_spectrum
-- print has_choice_lift
-- print equiv_lift
-- print has_choice_equiv_closed
definition ordinary_cohomology_theory_EM [constructor] (G : AbGroup) : ordinary_cohomology_theory :=
⦃ordinary_cohomology_theory, cohomology_theory_spectrum (EM_spectrum G), Hdimension := EM_dimension G ⦄
end cohomology