Spectral/homotopy/smash.hlean

419 lines
16 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Authors: Floris van Doorn
import homotopy.smash ..move_to_lib .pushout homotopy.red_susp
open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge is_trunc
function red_susp unit
/- To prove: Σ(X × Y) ≃ ΣX ΣY Σ(X ∧ Y) (?) (notation means suspension, wedge, smash) -/
/- To prove: Σ(X ∧ Y) ≃ X ★ Y (?) (notation means suspension, smash, join) -/
/- To prove: associative, A ∧ S¹ ≃ ΣA -/
variables {A B C D : Type*}
namespace smash
section
open pushout
definition smash_pequiv_smash [constructor] (f : A ≃* C) (g : B ≃* D) : A ∧ B ≃* C ∧ D :=
begin
fapply pequiv_of_equiv,
{ fapply pushout.equiv,
{ exact sum_equiv_sum f g },
{ exact prod_equiv_prod f g },
{ reflexivity },
{ intro v, induction v with a b, exact prod_eq idp (respect_pt g), exact prod_eq (respect_pt f) idp },
{ intro v, induction v with a b: reflexivity }},
{ exact ap inl (prod_eq (respect_pt f) (respect_pt g)) },
end
end
definition smash_pequiv_smash_left [constructor] (B : Type*) (f : A ≃* C) : A ∧ B ≃* C ∧ B :=
smash_pequiv_smash f pequiv.rfl
definition smash_pequiv_smash_right [constructor] (A : Type*) (g : B ≃* D) : A ∧ B ≃* A ∧ D :=
smash_pequiv_smash pequiv.rfl g
/- smash A B ≃ pcofiber (pprod_of_pwedge A B) -/
theorem elim_gluel' {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a a' : A) :
ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluel' a a') = Pgl a ⬝ (Pgl a')⁻¹ :=
!ap_con ⬝ !elim_gluel ◾ (!ap_inv ⬝ !elim_gluel⁻²)
theorem elim_gluer' {P : Type} {Pmk : Πa b, P} {Pl Pr : P}
(Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (b b' : B) :
ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluer' b b') = Pgr b ⬝ (Pgr b')⁻¹ :=
!ap_con ⬝ !elim_gluer ◾ (!ap_inv ⬝ !elim_gluer⁻²)
theorem elim'_gluel'_pt {P : Type} {Pmk : Πa b, P}
(Pgl : Πa : A, Pmk a pt = Pmk pt pt) (Pgr : Πb : B, Pmk pt b = Pmk pt pt)
(a : A) (ql : Pgl pt = idp) (qr : Pgr pt = idp) :
ap (smash.elim' Pmk Pgl Pgr ql qr) (gluel' a pt) = Pgl a :=
!elim_gluel' ⬝ whisker_left _ ql⁻²
theorem elim'_gluer'_pt {P : Type} {Pmk : Πa b, P}
(Pgl : Πa : A, Pmk a pt = Pmk pt pt) (Pgr : Πb : B, Pmk pt b = Pmk pt pt)
(b : B) (ql : Pgl pt = idp) (qr : Pgr pt = idp) :
ap (smash.elim' Pmk Pgl Pgr ql qr) (gluer' b pt) = Pgr b :=
!elim_gluer' ⬝ whisker_left _ qr⁻²
definition prod_of_wedge [unfold 3] (v : pwedge A B) : A × B :=
begin
induction v with a b ,
{ exact (a, pt) },
{ exact (pt, b) },
{ reflexivity }
end
definition wedge_of_sum [unfold 3] (v : A + B) : pwedge A B :=
begin
induction v with a b,
{ exact pushout.inl a },
{ exact pushout.inr b }
end
definition prod_of_wedge_of_sum [unfold 3] (v : A + B) : prod_of_wedge (wedge_of_sum v) = prod_of_sum v :=
begin
induction v with a b,
{ reflexivity },
{ reflexivity }
end
end smash open smash
namespace pushout
definition eq_inl_pushout_wedge_of_sum [unfold 3] (v : pwedge A B) :
inl pt = inl v :> pushout wedge_of_sum bool_of_sum :=
begin
induction v with a b,
{ exact glue (sum.inl pt) ⬝ (glue (sum.inl a))⁻¹, },
{ exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) ⬝ (glue (sum.inr b))⁻¹, },
{ apply eq_pathover_constant_left,
refine !con.right_inv ⬝pv _ ⬝vp !con_inv_cancel_right⁻¹, exact square_of_eq idp }
end
variables (A B)
definition eq_inr_pushout_wedge_of_sum [unfold 3] (b : bool) :
inl pt = inr b :> pushout (@wedge_of_sum A B) bool_of_sum :=
begin
induction b,
{ exact glue (sum.inl pt) },
{ exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) }
end
definition is_contr_pushout_wedge_of_sum : is_contr (pushout (@wedge_of_sum A B) bool_of_sum) :=
begin
apply is_contr.mk (pushout.inl pt),
intro x, induction x with v b w,
{ apply eq_inl_pushout_wedge_of_sum },
{ apply eq_inr_pushout_wedge_of_sum },
{ apply eq_pathover_constant_left_id_right,
induction w with a b,
{ apply whisker_rt, exact vrfl },
{ apply whisker_rt, exact vrfl }}
end
definition bool_of_sum_of_bool {A B : Type*} (b : bool) : bool_of_sum (sum_of_bool A B b) = b :=
by induction b: reflexivity
/- a different proof, using pushout lemmas, and the fact that the wedge is the pushout of
A + B <-- 2 --> 1 -/
definition pushout_wedge_of_sum_equiv_unit : pushout (@wedge_of_sum A B) bool_of_sum ≃ unit :=
begin
refine pushout_hcompose_equiv (sum_of_bool A B) (wedge_equiv_pushout_sum A B)
_ _ ⬝e _,
exact erfl,
intro x, induction x: esimp,
exact bool_of_sum_of_bool,
apply pushout_of_equiv_right
end
end pushout open pushout
namespace smash
variables (A B)
definition smash_punit_pequiv [constructor] : smash A punit ≃* punit :=
begin
fapply pequiv_of_equiv,
{ fapply equiv.MK,
{ exact λx, ⋆ },
{ exact λx, pt },
{ intro x, induction x, reflexivity },
{ exact abstract begin intro x, induction x,
{ induction b, exact gluel' pt a },
{ exact gluel pt },
{ exact gluer pt },
{ apply eq_pathover_constant_left_id_right, apply square_of_eq_top,
exact whisker_right _ !idp_con⁻¹ },
{ apply eq_pathover_constant_left_id_right, induction b,
refine !con.right_inv ⬝pv _, exact square_of_eq idp } end end }},
{ reflexivity }
end
definition smash_equiv_cofiber : smash A B ≃ cofiber (@prod_of_wedge A B) :=
begin
unfold [smash, cofiber, smash'], symmetry,
refine !pushout.symm ⬝e _,
fapply pushout_vcompose_equiv wedge_of_sum,
{ symmetry, apply equiv_unit_of_is_contr, apply is_contr_pushout_wedge_of_sum },
{ intro x, reflexivity },
{ apply prod_of_wedge_of_sum }
end
definition pprod_of_pwedge [constructor] : pwedge A B →* A ×* B :=
begin
fconstructor,
{ exact prod_of_wedge },
{ reflexivity }
end
definition smash_pequiv_pcofiber [constructor] : smash A B ≃* pcofiber (pprod_of_pwedge A B) :=
begin
apply pequiv_of_equiv (smash_equiv_cofiber A B),
exact (cofiber.glue pt)⁻¹
end
variables {A B}
/- commutativity -/
definition smash_flip [unfold 3] (x : smash A B) : smash B A :=
begin
induction x,
{ exact smash.mk b a },
{ exact auxr },
{ exact auxl },
{ exact gluer a },
{ exact gluel b }
end
definition smash_flip_smash_flip [unfold 3] (x : smash A B) : smash_flip (smash_flip x) = x :=
begin
induction x,
{ reflexivity },
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right,
refine ap_compose' smash_flip _ _ ⬝ ap02 _ !elim_gluel ⬝ !elim_gluer ⬝ph _,
apply hrfl },
{ apply eq_pathover_id_right,
refine ap_compose' smash_flip _ _ ⬝ ap02 _ !elim_gluer ⬝ !elim_gluel ⬝ph _,
apply hrfl }
end
variables (A B)
definition smash_comm [constructor] : smash A B ≃* smash B A :=
begin
fapply pequiv_of_equiv,
{ apply equiv.MK, do 2 exact smash_flip_smash_flip },
{ reflexivity }
end
variables {A B}
/- smash A S¹ = red_susp A -/
definition circle_elim_constant [unfold 5] {A : Type} {a : A} {p : a = a} (r : p = idp) (x : S¹) :
circle.elim a p x = a :=
begin
induction x,
{ reflexivity },
{ apply eq_pathover_constant_right, apply hdeg_square, exact !elim_loop ⬝ r }
end
definition red_susp_of_smash_pcircle [unfold 2] (x : smash A S¹*) : red_susp A :=
begin
induction x using smash.elim,
{ induction b, exact base, exact equator a },
{ exact base },
{ exact base },
{ reflexivity },
{ exact circle_elim_constant equator_pt b }
end
definition smash_pcircle_of_red_susp [unfold 2] (x : red_susp A) : smash A S¹* :=
begin
induction x,
{ exact pt },
{ exact gluel' pt a ⬝ ap (smash.mk a) loop ⬝ gluel' a pt },
{ refine !con.right_inv ◾ _ ◾ !con.right_inv,
exact ap_is_constant gluer loop ⬝ !con.right_inv }
end
exit
definition smash_pcircle_of_red_susp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) :
smash_pcircle_of_red_susp (red_susp_of_smash_pcircle (smash.mk a x)) = smash.mk a x :=
begin
induction x,
{ exact gluel' pt a },
{ exact abstract begin apply eq_pathover,
refine ap_compose smash_pcircle_of_red_susp _ _ ⬝ph _,
refine ap02 _ (elim_loop pt (equator a)) ⬝ !elim_equator ⬝ph _,
-- make everything below this a lemma defined by path induction?
refine !con_idp⁻¹ ⬝pv _, refine !con.assoc⁻¹ ⬝ph _, apply whisker_bl, apply whisker_lb,
apply whisker_tl, apply hrfl end end }
end
definition concat2o [unfold 10] {A B : Type} {f g h : A → B} {q : f ~ g} {r : g ~ h} {a a' : A}
{p : a = a'} (s : q a =[p] q a') (t : r a =[p] r a') : q a ⬝ r a =[p] q a' ⬝ r a' :=
by induction p; exact idpo
definition apd_con_fn [unfold 10] {A B : Type} {f g h : A → B} {q : f ~ g} {r : g ~ h} {a a' : A}
(p : a = a') : apd (λa, q a ⬝ r a) p = concat2o (apd q p) (apd r p) :=
by induction p; reflexivity
-- definition apd_con_fn_constant [unfold 10] {A B : Type} {f : A → B} {b b' : B} {q : Πa, f a = b}
-- {r : b = b'} {a a' : A} (p : a = a') :
-- apd (λa, q a ⬝ r) p = concat2o (apd q p) (pathover_of_eq _ idp) :=
-- by induction p; reflexivity
theorem apd_constant' {A A' : Type} {B : A' → Type} {a₁ a₂ : A} {a' : A'} (b : B a')
(p : a₁ = a₂) : apd (λx, b) p = pathover_of_eq p idp :=
by induction p; reflexivity
definition smash_pcircle_pequiv_red [constructor] (A : Type*) : smash A S¹* ≃* red_susp A :=
begin
fapply pequiv_of_equiv,
{ fapply equiv.MK,
{ exact red_susp_of_smash_pcircle },
{ exact smash_pcircle_of_red_susp },
{ exact abstract begin intro x, induction x,
{ reflexivity },
{ apply eq_pathover, apply hdeg_square,
refine ap_compose red_susp_of_smash_pcircle _ _ ⬝ ap02 _ !elim_equator ⬝ _ ⬝ !ap_id⁻¹,
refine !ap_con ⬝ (!ap_con ⬝ !elim_gluel' ◾ !ap_compose'⁻¹) ◾ !elim_gluel' ⬝ _,
esimp, exact !idp_con ⬝ !elim_loop },
{ exact sorry } end end },
{ intro x, induction x,
{ exact smash_pcircle_of_red_susp_of_smash_pcircle_pt a b },
{ exact gluel pt },
{ exact gluer pt },
{ apply eq_pathover_id_right,
refine ap_compose smash_pcircle_of_red_susp _ _ ⬝ph _,
unfold [red_susp_of_smash_pcircle],
refine ap02 _ !elim_gluel ⬝ph _,
esimp, apply whisker_rt, exact vrfl },
{ apply eq_pathover_id_right,
refine ap_compose smash_pcircle_of_red_susp _ _ ⬝ph _,
unfold [red_susp_of_smash_pcircle],
-- not sure why so many implicit arguments are needed here...
refine ap02 _ (@smash.elim_gluer A S¹* _ (λa, circle.elim red_susp.base (equator a)) red_susp.base red_susp.base (λa, refl red_susp.base) (circle_elim_constant equator_pt) b) ⬝ph _,
apply square_of_eq, induction b,
{ exact whisker_right _ !con.right_inv },
{ apply eq_pathover_dep, refine !apd_con_fn ⬝pho _ ⬝hop !apd_con_fn⁻¹,
refine ap (λx, concat2o x _) !rec_loop ⬝pho _ ⬝hop (ap011 concat2o (apd_compose1 (λa b, ap smash_pcircle_of_red_susp b) (circle_elim_constant equator_pt) loop) !apd_constant')⁻¹,
exact sorry }
}}},
{ reflexivity }
end
/- smash A S¹ = susp A -/
open susp
definition psusp_of_smash_pcircle [unfold 2] (x : smash A S¹*) : psusp A :=
begin
induction x using smash.elim,
{ induction b, exact pt, exact merid a ⬝ (merid pt)⁻¹ },
{ exact pt },
{ exact pt },
{ reflexivity },
{ induction b, reflexivity, apply eq_pathover_constant_right, apply hdeg_square,
exact !elim_loop ⬝ !con.right_inv }
end
definition smash_pcircle_of_psusp [unfold 2] (x : psusp A) : smash A S¹* :=
begin
induction x,
{ exact pt },
{ exact pt },
{ exact gluel' pt a ⬝ (ap (smash.mk a) loop ⬝ gluel' a pt) },
end
-- the definitions below compile, but take a long time to do so and have sorry's in them
definition smash_pcircle_of_psusp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) :
smash_pcircle_of_psusp (psusp_of_smash_pcircle (smash.mk a x)) = smash.mk a x :=
begin
induction x,
{ exact gluel' pt a },
{ exact abstract begin apply eq_pathover,
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
refine ap02 _ (elim_loop north (merid a ⬝ (merid pt)⁻¹)) ⬝ph _,
refine !ap_con ⬝ (!elim_merid ◾ (!ap_inv ⬝ !elim_merid⁻²)) ⬝ph _,
-- make everything below this a lemma defined by path induction?
exact sorry,
-- refine !con_idp⁻¹ ⬝pv _, apply whisker_tl, refine !con.assoc⁻¹ ⬝ph _,
-- apply whisker_bl, apply whisker_lb,
-- refine !con_idp⁻¹ ⬝pv _, apply whisker_tl, apply hrfl
-- refine !con_idp⁻¹ ⬝pv _, apply whisker_tl,
-- refine !con.assoc⁻¹ ⬝ph _, apply whisker_bl, apply whisker_lb, apply hrfl
-- apply square_of_eq, rewrite [+con.assoc], apply whisker_left, apply whisker_left,
-- symmetry, apply con_eq_of_eq_inv_con, esimp, apply con_eq_of_eq_con_inv,
-- refine _⁻² ⬝ !con_inv, refine _ ⬝ !con.assoc,
-- refine _ ⬝ whisker_right _ !inv_con_cancel_right⁻¹, refine _ ⬝ !con.right_inv⁻¹,
-- refine !con.right_inv ◾ _, refine _ ◾ !con.right_inv,
-- refine !ap_mk_right ⬝ !con.right_inv
end end }
end
-- definition smash_pcircle_of_psusp_of_smash_pcircle_gluer_base (b : S¹*)
-- : square (smash_pcircle_of_psusp_of_smash_pcircle_pt (Point A) b)
-- (gluer pt)
-- (ap smash_pcircle_of_psusp (ap (λ a, psusp_of_smash_pcircle a) (gluer b)))
-- (gluer b) :=
-- begin
-- refine ap02 _ !elim_gluer ⬝ph _,
-- induction b,
-- { apply square_of_eq, exact whisker_right _ !con.right_inv },
-- { apply square_pathover', exact sorry }
-- end
exit
definition smash_pcircle_pequiv [constructor] (A : Type*) : smash A S¹* ≃* psusp A :=
begin
fapply pequiv_of_equiv,
{ fapply equiv.MK,
{ exact psusp_of_smash_pcircle },
{ exact smash_pcircle_of_psusp },
{ exact abstract begin intro x, induction x,
{ reflexivity },
{ exact merid pt },
{ apply eq_pathover_id_right,
refine ap_compose psusp_of_smash_pcircle _ _ ⬝ph _,
refine ap02 _ !elim_merid ⬝ph _,
rewrite [↑gluel', +ap_con, +ap_inv, -ap_compose'],
refine (_ ◾ _⁻² ◾ _ ◾ (_ ◾ _⁻²)) ⬝ph _,
rotate 5, do 2 (unfold [psusp_of_smash_pcircle]; apply elim_gluel),
esimp, apply elim_loop, do 2 (unfold [psusp_of_smash_pcircle]; apply elim_gluel),
refine idp_con (merid a ⬝ (merid (Point A))⁻¹) ⬝ph _,
apply square_of_eq, refine !idp_con ⬝ _⁻¹, apply inv_con_cancel_right } end end },
{ intro x, induction x using smash.rec,
{ exact smash_pcircle_of_psusp_of_smash_pcircle_pt a b },
{ exact gluel pt },
{ exact gluer pt },
{ apply eq_pathover_id_right,
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
unfold [psusp_of_smash_pcircle],
refine ap02 _ !elim_gluel ⬝ph _,
esimp, apply whisker_rt, exact vrfl },
{ apply eq_pathover_id_right,
refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _,
unfold [psusp_of_smash_pcircle],
refine ap02 _ !elim_gluer ⬝ph _,
induction b,
{ apply square_of_eq, exact whisker_right _ !con.right_inv },
{ exact sorry}
}}},
{ reflexivity }
end
end smash