140 lines
5.3 KiB
Text
140 lines
5.3 KiB
Text
/-
|
||
Copyright (c) 2016 Jakob von Raumer. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn
|
||
|
||
The Wedge Sum of a family of Pointed Types
|
||
-/
|
||
import homotopy.wedge ..move_to_lib ..choice
|
||
|
||
open eq pushout pointed unit trunc_index sigma bool equiv trunc choice unit is_trunc
|
||
|
||
definition fwedge' {I : Type} (F : I → Type*) : Type := pushout (λi, ⟨i, Point (F i)⟩) (λi, ⋆)
|
||
definition pt' [constructor] {I : Type} {F : I → Type*} : fwedge' F := inr ⋆
|
||
definition fwedge [constructor] {I : Type} (F : I → Type*) : Type* := pointed.MK (fwedge' F) pt'
|
||
|
||
notation `⋁` := fwedge
|
||
|
||
namespace fwedge
|
||
variables {I : Type} {F : I → Type*}
|
||
|
||
definition il {i : I} (x : F i) : ⋁F := inl ⟨i, x⟩
|
||
definition inl (i : I) (x : F i) : ⋁F := il x
|
||
definition pinl [constructor] (i : I) : F i →* ⋁F := pmap.mk (inl i) (glue i)
|
||
definition glue (i : I) : inl i pt = pt :> ⋁ F := glue i
|
||
|
||
protected definition rec {P : ⋁F → Type} (Pinl : Π(i : I) (x : F i), P (il x))
|
||
(Pinr : P pt) (Pglue : Πi, pathover P (Pinl i pt) (glue i) (Pinr)) (y : fwedge' F) : P y :=
|
||
begin induction y, induction x, apply Pinl, induction x, apply Pinr, apply Pglue end
|
||
|
||
protected definition elim {P : Type} (Pinl : Π(i : I) (x : F i), P)
|
||
(Pinr : P) (Pglue : Πi, Pinl i pt = Pinr) (y : fwedge' F) : P :=
|
||
begin induction y with x u, induction x with i x, exact Pinl i x, induction u, apply Pinr, apply Pglue end
|
||
|
||
protected definition elim_glue {P : Type} {Pinl : Π(i : I) (x : F i), P}
|
||
{Pinr : P} (Pglue : Πi, Pinl i pt = Pinr) (i : I)
|
||
: ap (fwedge.elim Pinl Pinr Pglue) (fwedge.glue i) = Pglue i :=
|
||
!pushout.elim_glue
|
||
|
||
protected definition rec_glue {P : ⋁F → Type} {Pinl : Π(i : I) (x : F i), P (il x)}
|
||
{Pinr : P pt} (Pglue : Πi, pathover P (Pinl i pt) (glue i) (Pinr)) (i : I)
|
||
: apd (fwedge.rec Pinl Pinr Pglue) (fwedge.glue i) = Pglue i :=
|
||
!pushout.rec_glue
|
||
|
||
end fwedge
|
||
|
||
attribute fwedge.rec fwedge.elim [recursor 7] [unfold 7]
|
||
attribute fwedge.il fwedge.inl [constructor]
|
||
|
||
namespace fwedge
|
||
|
||
definition fwedge_of_pwedge [unfold 3] {A B : Type*} (x : A ∨ B) : ⋁(bool.rec A B) :=
|
||
begin
|
||
induction x with a b,
|
||
{ exact inl ff a },
|
||
{ exact inl tt b },
|
||
{ exact glue ff ⬝ (glue tt)⁻¹ }
|
||
end
|
||
|
||
definition pwedge_of_fwedge [unfold 3] {A B : Type*} (x : ⋁(bool.rec A B)) : A ∨ B :=
|
||
begin
|
||
induction x with b x b,
|
||
{ induction b, exact pushout.inl x, exact pushout.inr x },
|
||
{ exact pushout.inr pt },
|
||
{ induction b, exact pushout.glue ⋆, reflexivity }
|
||
end
|
||
|
||
definition pwedge_pequiv_fwedge [constructor] (A B : Type*) : A ∨ B ≃* ⋁(bool.rec A B) :=
|
||
begin
|
||
fapply pequiv_of_equiv,
|
||
{ fapply equiv.MK,
|
||
{ exact fwedge_of_pwedge },
|
||
{ exact pwedge_of_fwedge },
|
||
{ exact abstract begin intro x, induction x with b x b,
|
||
{ induction b: reflexivity },
|
||
{ exact glue tt },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose fwedge_of_pwedge _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
|
||
induction b, exact !elim_glue ⬝ph whisker_bl _ hrfl, apply square_of_eq idp }
|
||
end end },
|
||
{ exact abstract begin intro x, induction x with a b,
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ apply eq_pathover_id_right,
|
||
refine ap_compose pwedge_of_fwedge _ _ ⬝ ap02 _ !elim_glue ⬝ !ap_con ⬝
|
||
!elim_glue ◾ (!ap_inv ⬝ !elim_glue⁻²) ⬝ph _, exact hrfl } end end}},
|
||
{ exact glue ff }
|
||
end
|
||
|
||
definition is_contr_fwedge_of_neg {I : Type} (P : I → Type*) (H : ¬ I) : is_contr (⋁P) :=
|
||
begin
|
||
apply is_contr.mk pt, intro x, induction x, contradiction, reflexivity, contradiction
|
||
end
|
||
|
||
definition is_contr_fwedge_empty [instance] : is_contr (⋁empty.elim) :=
|
||
is_contr_fwedge_of_neg _ id
|
||
|
||
definition fwedge_pmap [constructor] {I : Type} {F : I → Type*} {X : Type*} (f : Πi, F i →* X) : ⋁F →* X :=
|
||
begin
|
||
fconstructor,
|
||
{ intro x, induction x,
|
||
exact f i x,
|
||
exact pt,
|
||
exact respect_pt (f i) },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition fwedge_pmap_beta [constructor] {I : Type} {F : I → Type*} {X : Type*} (f : Πi, F i →* X) (i : I) :
|
||
fwedge_pmap f ∘* pinl i ~* f i :=
|
||
begin
|
||
fconstructor,
|
||
{ reflexivity },
|
||
{ exact !idp_con ⬝ !fwedge.elim_glue⁻¹ }
|
||
end
|
||
|
||
definition fwedge_pmap_eta [constructor] {I : Type} {F : I → Type*} {X : Type*} (g : ⋁F →* X) :
|
||
fwedge_pmap (λi, g ∘* pinl i) ~* g :=
|
||
begin
|
||
fconstructor,
|
||
{ intro x, induction x,
|
||
reflexivity,
|
||
exact (respect_pt g)⁻¹,
|
||
apply eq_pathover, refine !elim_glue ⬝ph _, apply whisker_lb, exact hrfl },
|
||
{ exact con.left_inv (respect_pt g) }
|
||
end
|
||
|
||
definition fwedge_pmap_equiv [constructor] {I : Type} (F : I → Type*) (X : Type*) :
|
||
⋁F →* X ≃ Πi, F i →* X :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro g i, exact g ∘* pinl i },
|
||
{ exact fwedge_pmap },
|
||
{ intro f, apply eq_of_homotopy, intro i, apply eq_of_phomotopy, apply fwedge_pmap_beta f i },
|
||
{ intro g, apply eq_of_phomotopy, exact fwedge_pmap_eta g }
|
||
end
|
||
|
||
definition trunc_fwedge_pmap_equiv.{u} {n : ℕ₋₂} {I : Type.{u}} (H : has_choice n I)
|
||
(F : I → pType.{u}) (X : pType.{u}) : trunc n (⋁F →* X) ≃ Πi, trunc n (F i →* X) :=
|
||
trunc_equiv_trunc n (fwedge_pmap_equiv F X) ⬝e choice_equiv (λi, F i →* X)
|
||
|
||
end fwedge
|