Spectral/algebra/direct_sum.hlean

159 lines
5.9 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Egbert Rijke
Constructions with groups
-/
import .quotient_group .free_commutative_group .product_group
open eq is_equiv algebra is_trunc set_quotient relation sigma prod sum list trunc function equiv sigma.ops
namespace group
section
parameters {I : Type} [is_set I] (Y : I → AbGroup)
variables {A' : AbGroup} {Y' : I → AbGroup}
definition dirsum_carrier : AbGroup := free_ab_group (Σi, Y i)
local abbreviation ι [constructor] := @free_ab_group_inclusion
inductive dirsum_rel : dirsum_carrier → Type :=
| rmk : Πi y₁ y₂, dirsum_rel (ι ⟨i, y₁⟩ * ι ⟨i, y₂⟩ * (ι ⟨i, y₁ * y₂⟩)⁻¹)
definition dirsum : AbGroup := quotient_ab_group_gen dirsum_carrier (λg, ∥dirsum_rel g∥)
-- definition dirsum_carrier_incl [constructor] (i : I) : Y i →g dirsum_carrier :=
definition dirsum_incl [constructor] (i : I) : Y i →g dirsum :=
homomorphism.mk (λy, class_of (ι ⟨i, y⟩))
begin intro g h, symmetry, apply gqg_eq_of_rel, apply tr, apply dirsum_rel.rmk end
parameter {Y}
definition dirsum.rec {P : dirsum → Type} [H : Πg, is_prop (P g)]
(h₁ : Πi (y : Y i), P (dirsum_incl i y)) (h₂ : P 1) (h₃ : Πg h, P g → P h → P (g * h)) :
Πg, P g :=
begin
refine @set_quotient.rec_prop _ _ _ H _,
refine @set_quotient.rec_prop _ _ _ (λx, !H) _,
esimp, intro l, induction l with s l ih,
exact h₂,
induction s with v v,
induction v with i y,
exact h₃ _ _ (h₁ i y) ih,
induction v with i y,
refine h₃ (gqg_map _ _ (class_of [inr ⟨i, y⟩])) _ _ ih,
refine transport P _ (h₁ i y⁻¹),
refine _ ⬝ !one_mul,
refine _ ⬝ ap (λx, mul x _) (to_respect_zero (dirsum_incl i)),
apply gqg_eq_of_rel',
apply tr, esimp,
refine transport dirsum_rel _ (dirsum_rel.rmk i y⁻¹ y),
rewrite [mul.left_inv, mul.assoc],
end
definition dirsum_homotopy {φ ψ : dirsum →g A'}
(h : Πi (y : Y i), φ (dirsum_incl i y) = ψ (dirsum_incl i y)) : φ ~ ψ :=
begin
refine dirsum.rec _ _ _,
exact h,
refine !to_respect_zero ⬝ !to_respect_zero⁻¹,
intro g₁ g₂ h₁ h₂, rewrite [* to_respect_mul, h₁, h₂]
end
definition dirsum_elim_resp_quotient (f : Πi, Y i →g A') (g : dirsum_carrier)
(r : ∥dirsum_rel g∥) : free_ab_group_elim (λv, f v.1 v.2) g = 1 :=
begin
induction r with r, induction r,
rewrite [to_respect_mul, to_respect_inv, to_respect_mul, ▸*, ↑foldl, *one_mul,
to_respect_mul], apply mul.right_inv
end
definition dirsum_elim [constructor] (f : Πi, Y i →g A') : dirsum →g A' :=
gqg_elim _ (free_ab_group_elim (λv, f v.1 v.2)) (dirsum_elim_resp_quotient f)
definition dirsum_elim_compute (f : Πi, Y i →g A') (i : I) (y : Y i) :
dirsum_elim f (dirsum_incl i y) = f i y :=
begin
apply one_mul
end
definition dirsum_elim_unique (f : Πi, Y i →g A') (k : dirsum →g A')
(H : Πi, k ∘g dirsum_incl i ~ f i) : k ~ dirsum_elim f :=
begin
apply gqg_elim_unique,
apply free_ab_group_elim_unique,
intro x, induction x with i y, exact H i y
end
end
definition binary_dirsum (G H : AbGroup) : dirsum (bool.rec G H) ≃g G ×ag H :=
let branch := bool.rec G H in
let to_hom := (dirsum_elim (bool.rec (product_inl G H) (product_inr G H))
: dirsum (bool.rec G H) →g G ×ag H) in
let from_hom := (Group_sum_elim (dirsum (bool.rec G H))
(dirsum_incl branch bool.ff) (dirsum_incl branch bool.tt)
: G ×g H →g dirsum branch) in
begin
fapply isomorphism.mk,
{ exact dirsum_elim (bool.rec (product_inl G H) (product_inr G H)) },
fapply adjointify,
{ exact from_hom },
{ intro gh, induction gh with g h,
exact prod_eq (mul_one (1 * g) ⬝ one_mul g) (ap (λ o, o * h) (mul_one 1) ⬝ one_mul h) },
{ refine dirsum.rec _ _ _,
{ intro b x,
refine ap from_hom (dirsum_elim_compute (bool.rec (product_inl G H) (product_inr G H)) b x) ⬝ _,
induction b,
{ exact ap (λ y, dirsum_incl branch bool.ff x * y) (to_respect_one (dirsum_incl branch bool.tt)) ⬝ mul_one _ },
{ exact ap (λ y, y * dirsum_incl branch bool.tt x) (to_respect_one (dirsum_incl branch bool.ff)) ⬝ one_mul _ }
},
{ refine ap from_hom (to_respect_one to_hom) ⬝ to_respect_one from_hom },
{ intro g h gβ hβ,
refine ap from_hom (to_respect_mul to_hom _ _) ⬝ to_respect_mul from_hom _ _ ⬝ _,
exact ap011 mul gβ hβ
}
}
end
variables {I J : Set} {Y Y' Y'' : I → AbGroup}
definition dirsum_functor [constructor] (f : Πi, Y i →g Y' i) : dirsum Y →g dirsum Y' :=
dirsum_elim (λi, dirsum_incl Y' i ∘g f i)
theorem dirsum_functor_compose (f' : Πi, Y' i →g Y'' i) (f : Πi, Y i →g Y' i) :
dirsum_functor f' ∘a dirsum_functor f ~ dirsum_functor (λi, f' i ∘a f i) :=
begin
apply dirsum_homotopy,
intro i y, reflexivity,
end
variable (Y)
definition dirsum_functor_gid : dirsum_functor (λi, gid (Y i)) ~ gid (dirsum Y) :=
begin
apply dirsum_homotopy,
intro i y, reflexivity,
end
variable {Y}
definition dirsum_functor_mul (f f' : Πi, Y i →g Y' i) :
homomorphism_mul (dirsum_functor f) (dirsum_functor f') ~
dirsum_functor (λi, homomorphism_mul (f i) (f' i)) :=
begin
apply dirsum_homotopy,
intro i y, exact sorry
end
definition dirsum_functor_homotopy {f f' : Πi, Y i →g Y' i} (p : f ~2 f') :
dirsum_functor f ~ dirsum_functor f' :=
begin
apply dirsum_homotopy,
intro i y, exact sorry
end
definition dirsum_functor_left [constructor] (f : J → I) : dirsum (Y ∘ f) →g dirsum Y :=
dirsum_elim (λj, dirsum_incl Y (f j))
end group