Spectral/colimit/seq_colim.hlean

949 lines
39 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Egbert Rijke
-/
import hit.colimit .sequence cubical.squareover types.arrow types.equiv
cubical.pathover2
open eq nat sigma sigma.ops quotient equiv pi is_trunc is_equiv fiber function trunc
namespace seq_colim
-- note: this clashes with the abbreviation defined in namespace "colimit"
abbreviation ι [constructor] := @inclusion
abbreviation ι' [constructor] [parsing_only] {A} (f n) := @inclusion A f n
universe variable v
variables {A A' A'' : → Type} (f : seq_diagram A) (f' : seq_diagram A') (f'' : seq_diagram A'')
(τ τ₂ : Π⦃n⦄, A n → A' n) (p : Π⦃n⦄ (a : A n), τ (f a) = f' (τ a))
(p₂ : Π⦃n⦄ (a : A n), τ₂ (f a) = f' (τ₂ a))
(τ' : Π⦃n⦄, A' n → A'' n) (p' : Π⦃n⦄ (a' : A' n), τ' (f' a') = f'' (τ' a'))
{P : Π⦃n⦄, A n → Type.{v}} (g : seq_diagram_over f P) {n : } {a : A n}
definition lrep_glue {n m : } (H : n ≤ m) (a : A n) : ι f (lrep f H a) = ι f a :=
begin
induction H with m H p,
{ reflexivity },
{ exact glue f (lrep f H a) ⬝ p }
end
-- probably not needed
-- definition rep0_back_glue [is_equiseq f] (k : ) (a : A k) : ι f (rep0_back f k a) = ι f a :=
-- begin
-- exact sorry
-- end
definition colim_back [unfold 4] [H : is_equiseq f] : seq_colim f → A 0 :=
begin
intro x,
induction x with k a k a,
{ exact lrep_back f (zero_le k) a},
rexact ap (lrep_back f (zero_le k)) (left_inv (@f k) a),
end
section
variable {f}
local attribute is_equiv_lrep [instance] --[priority 500]
definition is_equiv_inclusion0 (H : is_equiseq f) : is_equiv (ι' f 0) :=
begin
fapply adjointify,
{ exact colim_back f},
{ intro x, induction x with k a k a,
{ refine (lrep_glue f (zero_le k) (lrep_back f (zero_le k) a))⁻¹ ⬝ _,
exact ap (ι f) (right_inv (lrep f (zero_le k)) a)},
apply eq_pathover_id_right,
refine (ap_compose (ι f) (colim_back f) _) ⬝ph _,
refine ap02 _ _ ⬝ph _, rotate 1,
{ rexact elim_glue f _ _ a },
refine _ ⬝pv ((natural_square (lrep_glue f (zero_le k))
(ap (lrep_back f (zero_le k)) (left_inv (@f k) a)))⁻¹ʰ ⬝h _),
{ exact (glue f _)⁻¹ ⬝ ap (ι f) (right_inv (lrep f (zero_le (succ k))) (f a)) },
{ rewrite [-con.assoc, -con_inv] },
refine !ap_compose⁻¹ ⬝ ap_compose (ι f) _ _ ⬝ph _,
refine dconcat (aps (ι' f k) (natural_square (right_inv (lrep f (zero_le k)))
(left_inv (@f _) a))) _,
apply move_top_of_left, apply move_left_of_bot,
refine ap02 _ (whisker_left _ (adj (@f _) a)) ⬝pv _,
rewrite [-+ap_con, -ap_compose', ap_id],
apply natural_square_tr },
{ intro a, reflexivity }
end
definition equiv_of_is_equiseq [constructor] (H : is_equiseq f) : seq_colim f ≃ A 0 :=
(equiv.mk _ (is_equiv_inclusion0 H))⁻¹ᵉ
variable (f)
end
section
definition rep_glue (k : ) (a : A n) : ι f (rep f k a) = ι f a :=
begin
induction k with k IH,
{ reflexivity},
{ exact glue f (rep f k a) ⬝ IH}
end
/- functorial action and equivalences -/
section functor
variables {f f' f''}
include p
definition seq_colim_functor [unfold 7] : seq_colim f → seq_colim f' :=
begin
intro x, induction x with n a n a,
{ exact ι f' (τ a)},
{ exact ap (ι f') (p a) ⬝ glue f' (τ a)}
end
omit p
theorem seq_colim_functor_glue {n : } (a : A n)
: ap (seq_colim_functor τ p) (glue f a) = ap (ι f') (p a) ⬝ glue f' (τ a) :=
!elim_glue
definition seq_colim_functor_compose [constructor] (x : seq_colim f) :
seq_colim_functor (λn x, τ' (τ x)) (λn, hvconcat (@p n) (@p' n)) x =
seq_colim_functor τ' p' (seq_colim_functor τ p x) :=
begin
induction x, reflexivity,
apply eq_pathover, apply hdeg_square,
refine !seq_colim_functor_glue ⬝ _ ⬝ (ap_compose (seq_colim_functor _ _) _ _)⁻¹,
refine _ ⬝ (ap02 _ proof !seq_colim_functor_glue qed ⬝ !ap_con)⁻¹,
refine _ ⬝ (proof !ap_compose'⁻¹ ⬝ ap_compose (ι f'') _ _ qed ◾ proof !seq_colim_functor_glue qed)⁻¹,
exact whisker_right _ !ap_con ⬝ !con.assoc
end
variable (f)
definition seq_colim_functor_id [constructor] (x : seq_colim f) :
seq_colim_functor (λn, id) (λn, homotopy.rfl) x = x :=
begin
induction x, reflexivity,
apply eq_pathover, apply hdeg_square,
exact !seq_colim_functor_glue ⬝ !idp_con ⬝ !ap_id⁻¹,
end
variables {f τ τ₂ p p₂}
definition seq_colim_functor_homotopy [constructor] (q : τ ~2 τ₂)
(r : Π⦃n⦄ (a : A n), square (q (n+1) (f a)) (ap (@f' n) (q n a)) (p a) (p₂ a))
(x : seq_colim f) :
seq_colim_functor τ p x = seq_colim_functor τ₂ p₂ x :=
begin
induction x,
exact ap (ι f') (q n a),
apply eq_pathover,
refine !seq_colim_functor_glue ⬝ph _ ⬝hp !seq_colim_functor_glue⁻¹,
refine aps (ι f') (r a) ⬝v !ap_compose⁻¹ ⬝pv natural_square_tr (glue f') (q n a),
end
variables (τ τ₂ p p₂)
definition is_equiv_seq_colim_functor [constructor] [H : Πn, is_equiv (@τ n)]
: is_equiv (seq_colim_functor @τ p) :=
adjointify _ (seq_colim_functor (λn, (@τ _)⁻¹) (λn a, inv_commute' τ f f' p a))
abstract begin
intro x,
refine !seq_colim_functor_compose⁻¹ ⬝ seq_colim_functor_homotopy _ _ x ⬝ !seq_colim_functor_id,
{ intro n a, exact right_inv (@τ n) a },
{ intro n a,
refine whisker_right _ !ap_inv_commute' ⬝ !inv_con_cancel_right ⬝ whisker_left _ !ap_inv ⬝ph _,
apply whisker_bl, apply whisker_tl, exact ids }
end end
abstract begin
intro x,
refine !seq_colim_functor_compose⁻¹ ⬝ seq_colim_functor_homotopy _ _ x ⬝ !seq_colim_functor_id,
{ intro n a, exact left_inv (@τ n) a },
{ intro n a,
esimp [hvconcat],
refine whisker_left _ (!inv_commute'_fn ⬝ !con.assoc) ⬝ !con_inv_cancel_left ⬝ph _,
apply whisker_bl, apply whisker_tl, exact ids }
end end
definition seq_colim_equiv [constructor] (τ : Π{n}, A n ≃ A' n)
(p : Π⦃n⦄ (a : A n), τ (f a) = f' (τ a)) : seq_colim f ≃ seq_colim f' :=
equiv.mk _ (is_equiv_seq_colim_functor @τ p)
definition seq_colim_rec_unc [unfold 4] {P : seq_colim f → Type}
(v : Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)),
Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a)
: Π(x : seq_colim f), P x :=
by induction v with Pincl Pglue; exact seq_colim.rec f Pincl Pglue
definition is_equiv_seq_colim_rec (P : seq_colim f → Type) :
is_equiv (seq_colim_rec_unc :
(Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)),
Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a)
→ (Π (aa : seq_colim f), P aa)) :=
begin
fapply adjointify,
{ intro s, exact ⟨λn a, s (ι f a), λn a, apd s (glue f a)⟩},
{ intro s, apply eq_of_homotopy, intro x, induction x,
{ reflexivity},
{ apply eq_pathover_dep, esimp, apply hdeg_squareover, apply rec_glue}},
{ intro v, induction v with Pincl Pglue, fapply ap (sigma.mk _),
apply eq_of_homotopy2, intros n a, apply rec_glue},
end
/- universal property -/
definition equiv_seq_colim_rec (P : seq_colim f → Type) :
(Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)),
Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a) ≃ (Π (aa : seq_colim f), P aa) :=
equiv.mk _ !is_equiv_seq_colim_rec
end functor
definition shift_up [unfold 3] (x : seq_colim f) : seq_colim (shift_diag f) :=
begin
induction x,
{ exact ι' (shift_diag f) n (f a)},
{ exact glue (shift_diag f) (f a)}
end
definition shift_down [unfold 3] (x : seq_colim (shift_diag f)) : seq_colim f :=
begin
induction x,
{ exact ι' f (n+1) a},
{ exact glue f a}
end
-- definition kshift_up' (k : ) (x : seq_colim f) : seq_colim (kshift_diag' f k) :=
-- begin
-- induction x,
-- { apply ι' _ n, exact rep f k a},
-- { exact sorry}
-- end
-- definition kshift_down' (k : ) (x : seq_colim (kshift_diag' f k)) : seq_colim f :=
-- begin
-- induction x,
-- { exact ι f a},
-- { esimp, exact sorry}
-- end
end
definition shift_equiv [constructor] : seq_colim f ≃ seq_colim (shift_diag f) :=
equiv.MK (shift_up f)
(shift_down f)
abstract begin
intro x, induction x,
{ exact glue _ a },
{ apply eq_pathover,
rewrite [▸*, ap_id, ap_compose (shift_up f) (shift_down f), ↑shift_down,
elim_glue],
apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹ }
end end
abstract begin
intro x, induction x,
{ exact glue _ a },
{ apply eq_pathover,
rewrite [▸*, ap_id, ap_compose (shift_down f) (shift_up f), ↑shift_up,
elim_glue],
apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹ }
end end
-- definition kshift_equiv [constructor] (k : )
-- : seq_colim A ≃ @seq_colim (λn, A (k + n)) (kshift_diag A k) :=
-- equiv.MK (kshift_up k)
-- (kshift_down k)
-- abstract begin
-- intro a, exact sorry,
-- -- induction a,
-- -- { esimp, exact glue a},
-- -- { apply eq_pathover,
-- -- rewrite [▸*, ap_id, ap_compose shift_up shift_down, ↑shift_down,
-- -- @elim_glue (λk, A (succ k)) _, ↑shift_up],
-- -- apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹}
-- end end
-- abstract begin
-- intro a, exact sorry
-- -- induction a,
-- -- { exact glue a},
-- -- { apply eq_pathover,
-- -- rewrite [▸*, ap_id, ap_compose shift_down shift_up, ↑shift_up,
-- -- @elim_glue A _, ↑shift_down],
-- -- apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹}
-- end end
-- definition kshift_equiv' [constructor] (k : ) : seq_colim f ≃ seq_colim (kshift_diag' f k) :=
-- equiv.MK (kshift_up' f k)
-- (kshift_down' f k)
-- abstract begin
-- intro a, exact sorry,
-- -- induction a,
-- -- { esimp, exact glue a},
-- -- { apply eq_pathover,
-- -- rewrite [▸*, ap_id, ap_compose shift_up shift_down, ↑shift_down,
-- -- @elim_glue (λk, A (succ k)) _, ↑shift_up],
-- -- apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹}
-- end end
-- abstract begin
-- intro a, exact sorry
-- -- induction a,
-- -- { exact glue a},
-- -- { apply eq_pathover,
-- -- rewrite [▸*, ap_id, ap_compose shift_down shift_up, ↑shift_up,
-- -- @elim_glue A _, ↑shift_down],
-- -- apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹}
-- end end
/- todo: define functions back and forth explicitly -/
definition kshift'_equiv (k : ) : seq_colim f ≃ seq_colim (kshift_diag' f k) :=
begin
induction k with k IH,
{ reflexivity },
{ exact IH ⬝e shift_equiv (kshift_diag' f k) ⬝e
seq_colim_equiv (λn, equiv_ap A (succ_add n k))
(λn a, proof !tr_inv_tr ⬝ !transport_lemma⁻¹ qed) }
end
definition kshift_equiv_inv (k : ) : seq_colim (kshift_diag f k) ≃ seq_colim f :=
begin
induction k with k IH,
{ exact seq_colim_equiv (λn, equiv_ap A (nat.zero_add n)) (λn a, !transport_lemma2) },
{ exact seq_colim_equiv (λn, equiv_ap A (succ_add k n))
(λn a, transport_lemma2 (succ_add k n) f a) ⬝e
(shift_equiv (kshift_diag f k))⁻¹ᵉ ⬝e IH }
end
definition kshift_equiv [constructor] (k : ) : seq_colim f ≃ seq_colim (kshift_diag f k) :=
(kshift_equiv_inv f k)⁻¹ᵉ
-- definition kshift_equiv2 [constructor] (k : ) : seq_colim f ≃ seq_colim (kshift_diag f k) :=
-- begin
-- refine equiv_change_fun (kshift_equiv f k) _,
-- end
variable {f}
definition seq_colim_constant_seq [constructor] (X : Type) : seq_colim (constant_seq X) ≃ X :=
equiv_of_is_equiseq (λn, !is_equiv_id)
variable (f)
definition is_contr_seq_colim {A : → Type} (f : seq_diagram A)
[Πk, is_contr (A k)] : is_contr (seq_colim f) :=
begin
apply @is_trunc_is_equiv_closed (A 0),
apply is_equiv_inclusion0, intro n, apply is_equiv_of_is_contr
end
definition seq_colim_equiv_of_is_equiv [constructor] {n : } (H : Πk, k ≥ n → is_equiv (@f k)) :
seq_colim f ≃ A n :=
kshift_equiv f n ⬝e equiv_of_is_equiseq (λk, H (n+k) !le_add_right)
/- colimits of dependent sequences, sigma's commute with colimits -/
section over
variable {f}
definition rep_f_equiv_natural {k : } (p : P (rep f k (f a))) :
transporto P (rep_f f (succ k) a) (g p) = g (transporto P (rep_f f k a) p) :=
(fn_tro_eq_tro_fn2 (rep_f f k a) g p)⁻¹
variable (a)
definition over_f_equiv [constructor] :
seq_colim (seq_diagram_of_over g (f a)) ≃ seq_colim (shift_diag (seq_diagram_of_over g a)) :=
seq_colim_equiv (rep_f_equiv f P a) (λk p, rep_f_equiv_natural g p)
definition seq_colim_over_equiv :
seq_colim (seq_diagram_of_over g (f a)) ≃ seq_colim (seq_diagram_of_over g a) :=
over_f_equiv g a ⬝e (shift_equiv (seq_diagram_of_over g a))⁻¹ᵉ
definition seq_colim_over_equiv_glue {k : } (x : P (rep f k (f a))) :
ap (seq_colim_over_equiv g a) (glue (seq_diagram_of_over g (f a)) x) =
ap (ι' (seq_diagram_of_over g a) (k+2)) (rep_f_equiv_natural g x) ⬝
glue (seq_diagram_of_over g a) (rep_f f k a ▸o x) :=
begin
refine ap_compose (shift_down (seq_diagram_of_over g a)) _ _ ⬝ _,
exact ap02 _ !elim_glue ⬝ !ap_con ⬝ !ap_compose'⁻¹ ◾ !elim_glue
end
variable {a}
include g
definition seq_colim_over [unfold 5] (x : seq_colim f) : Type.{v} :=
begin
refine seq_colim.elim_type f _ _ x,
{ intro n a, exact seq_colim (seq_diagram_of_over g a)},
{ intro n a, exact seq_colim_over_equiv g a }
end
omit g
definition ιo [constructor] (p : P a) : seq_colim_over g (ι f a) :=
ι' _ 0 p
-- Warning: the order of addition has changed in rep_rep
-- definition rep_equiv_rep_rep (l : )
-- : @seq_colim (λk, P (rep (k + l) a)) (kshift_diag' _ _) ≃
-- @seq_colim (λk, P (rep k (rep l a))) (seq_diagram_of_over P (rep l a)) :=
-- seq_colim_equiv (λk, rep_rep_equiv P a k l) abstract (λk p,
-- begin
-- esimp,
-- rewrite [+cast_apd011],
-- refine _ ⬝ (fn_tro_eq_tro_fn (rep_f k a)⁻¹ᵒ g p)⁻¹ᵖ,
-- rewrite [↑rep_f,↓rep_f k a],
-- refine !pathover_ap_invo_tro ⬝ _,
-- rewrite [apo_invo,apo_tro]
-- end) end
variable {P}
theorem seq_colim_over_glue /- r -/ (x : seq_colim_over g (ι f (f a)))
: transport (seq_colim_over g) (glue f a) x = shift_down _ (over_f_equiv g a x) :=
ap10 (elim_type_glue _ _ _ a) x
theorem seq_colim_over_glue_inv (x : seq_colim_over g (ι f a))
: transport (seq_colim_over g) (glue f a)⁻¹ x = to_inv (over_f_equiv g a) (shift_up _ x) :=
ap10 (elim_type_glue_inv _ _ _ a) x
definition glue_over (p : P (f a)) : pathover (seq_colim_over g) (ιo g p) (glue f a) (ι' _ 1 p) :=
pathover_of_tr_eq !seq_colim_over_glue
-- we can define a function from the colimit of total spaces to the total space of the colimit.
/- TO DO: define glue' in the same way as glue' -/
definition glue' (p : P a) : ⟨ι f (f a), ιo g (g p)⟩ = ⟨ι f a, ιo g p⟩ :=
sigma_eq (glue f a) (glue_over g (g p) ⬝op glue (seq_diagram_of_over g a) p)
definition glue_star (k : ) (x : P (rep f k (f a))) :
⟨ι f (f a), ι (seq_diagram_of_over g (f a)) x⟩ =
⟨ι f a, ι (seq_diagram_of_over g a) (to_fun (rep_f_equiv f P a k) x)⟩
:> sigma (seq_colim_over g) :=
begin
apply dpair_eq_dpair (glue f a),
apply pathover_of_tr_eq,
refine seq_colim_over_glue g (ι (seq_diagram_of_over g (f a)) x)
end
definition sigma_colim_of_colim_sigma [unfold 5] (a : seq_colim (seq_diagram_sigma g)) :
Σ(x : seq_colim f), seq_colim_over g x :=
begin
induction a with n v n v,
{ induction v with a p, exact ⟨ι f a, ιo g p⟩},
{ induction v with a p, exact glue' g p }
end
definition colim_sigma_triangle [unfold 5] (a : seq_colim (seq_diagram_sigma g)) :
(sigma_colim_of_colim_sigma g a).1 = seq_colim_functor (λn, sigma.pr1) (λn, homotopy.rfl) a :=
begin
induction a with n v n v,
{ induction v with a p, reflexivity },
{ induction v with a p, apply eq_pathover, apply hdeg_square,
refine ap_compose sigma.pr1 _ _ ⬝ ap02 _ !elim_glue ⬝ _ ⬝ !elim_glue⁻¹,
exact !sigma_eq_pr1 ⬝ !idp_con⁻¹ }
end
-- we now want to show that this function is an equivalence.
/-
Kristina's proof of the induction principle of colim-sigma for sigma-colim.
It's a double induction, so we have 4 cases: point-point, point-path, path-point and path-path.
The main idea of the proof is that for the path-path case you need to fill a square, but we can
define the point-path case as a filler for this square.
-/
open sigma
/-
dictionary:
Kristina | Lean
VARIABLE NAMES (A, P, k, n, e, w are the same)
x : A_n | a : A n
a : A_n → A_{n+1} | f : A n → A (n+1)
y : P(n, x) | x : P a (maybe other variables)
f : P(n, x) → P(n+1, a_n x) | g : P a → P (f a)
DEFINITION NAMES
κ | glue
U | rep_f_equiv : P (n+1+k, rep f k (f x)) ≃ P (n+k+1, rep f (k+1) x)
δ | rep_f_equiv_natural
F | over_f_equiv g a ⬝e (shift_equiv (λk, P (rep f k a)) (seq_diagram_of_over g a))⁻¹ᵉ
g_* | g_star
g | sigma_colim_rec_point
-/
definition glue_star_eq (k : ) (x : P (rep f k (f a))) :
glue_star g k x =
dpair_eq_dpair (glue f a) (pathover_tr (glue f a) (ι (seq_diagram_of_over g (f a)) x)) ⬝
ap (dpair (ι f a)) (seq_colim_over_glue g (ι (seq_diagram_of_over g (f a)) x)) :=
ap (sigma_eq _) !pathover_of_tr_eq_eq_concato ⬝ !sigma_eq_con ⬝ whisker_left _ !ap_dpair⁻¹
definition g_star_step {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type}
(e : Πn (a : A n) (x : P a), E ⟨ι f a, ιo g x⟩) {k : }
(IH : Π{n} {a : A n} (x : P (rep f k a)), E ⟨ι f a, ι (seq_diagram_of_over g a) x⟩) :
Σ(gs : Π⦃n : ℕ⦄ {a : A n} (x : P (rep f (k+1) a)), E ⟨ι f a, ι (seq_diagram_of_over g a) x⟩),
Π⦃n : ℕ⦄ {a : A n} (x : P (rep f k (f a))),
pathover E (IH x) (glue_star g k x) (gs (transporto P (rep_f f k a) x)) :=
begin
fconstructor,
{ intro n a,
refine equiv_rect (rep_f_equiv f P a k) _ _,
intro z, refine transport E _ (IH z),
exact glue_star g k z },
{ intro n a x, exact !pathover_tr ⬝op !equiv_rect_comp⁻¹ }
end
definition g_star /- g_* -/ {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type}
(e : Πn (a : A n) (x : P a), E ⟨ι f a, ιo g x⟩) {k : } :
Π {n : } {a : A n} (x : P (rep f k a)), E ⟨ι f a, ι (seq_diagram_of_over g a) x⟩ :=
begin
induction k with k IH: intro n a x,
{ exact e n a x },
{ apply (g_star_step g e @IH).1 }
end
definition g_star_path_left {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type}
(e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩)
(w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x))
{k : } {n : } {a : A n} (x : P (rep f k (f a))) :
pathover E (g_star g e x) (glue_star g k x)
(g_star g e (transporto P (rep_f f k a) x)) :=
by apply (g_star_step g e (@(g_star g e) k)).2
/- this is the bottom of the square we have to fill in the end -/
definition bottom_square {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type}
(e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩)
(w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x))
(k : ) {n : } {a : A n} (x : P (rep f k (f a))) :=
move_top_of_right (natural_square
(λ b, dpair_eq_dpair (glue f a) (pathover_tr (glue f a) b) ⬝
ap (dpair (ι f a)) (seq_colim_over_glue g b))
(glue (seq_diagram_of_over g (f a)) x) ⬝hp
ap_compose (dpair (ι f a)) (to_fun (seq_colim_over_equiv g a))
(glue (seq_diagram_of_over g (f a)) x) ⬝hp
(ap02 (dpair (ι f a)) (seq_colim_over_equiv_glue g a x)⁻¹)⁻¹ ⬝hp
ap_con (dpair (ι f a))
(ap (λx, shift_down (seq_diagram_of_over g a) (ι (shift_diag (seq_diagram_of_over g a)) x))
(rep_f_equiv_natural g x))
(glue (seq_diagram_of_over g a) (to_fun (rep_f_equiv f P a k) x)))
/- this is the composition + filler -/
definition g_star_path_right_step {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type}
(e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩)
(w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x))
(k : ) {n : } {a : A n} (x : P (rep f k (f a)))
(IH : Π(n : ) (a : A n) (x : P (rep f k a)),
pathover E (g_star g e (seq_diagram_of_over g a x))
(ap (dpair (ι f a)) (glue (seq_diagram_of_over g a) x))
(g_star g e x)) :=
squareover_fill_r
(bottom_square g e w k x)
(change_path (glue_star_eq g (succ k) (g x)) (g_star_path_left g e w (g x)) ⬝o
pathover_ap E (dpair (ι f a))
(pathover_ap (λ (b : seq_colim (seq_diagram_of_over g a)), E ⟨ι f a, b⟩)
(ι (seq_diagram_of_over g a)) (apd (g_star g e) (rep_f_equiv_natural g x))))
(change_path (glue_star_eq g k x) (g_star_path_left g e w x))
(IH (n+1) (f a) x)
/- this is just the composition -/
definition g_star_path_right_step1 {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type}
(e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩)
(w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x))
(k : ) {n : } {a : A n} (x : P (rep f k (f a)))
(IH : Π(n : ) (a : A n) (x : P (rep f k a)),
pathover E (g_star g e (seq_diagram_of_over g a x))
(ap (dpair (ι f a)) (glue (seq_diagram_of_over g a) x))
(g_star g e x)) :=
(g_star_path_right_step g e w k x IH).1
definition g_star_path_right {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type}
(e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩)
(w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x))
(k : ) {n : } {a : A n} (x : P (rep f k a)) :
pathover E (g_star g e (seq_diagram_of_over g a x))
(ap (dpair (ι f a)) (glue (seq_diagram_of_over g a) x))
(g_star g e x) :=
begin
revert n a x, induction k with k IH: intro n a x,
{ exact abstract begin refine pathover_cancel_left !pathover_tr⁻¹ᵒ (change_path _ (w x)),
apply sigma_eq_concato_eq end end },
{ revert x, refine equiv_rect (rep_f_equiv f P a k) _ _, intro x,
exact g_star_path_right_step1 g e w k x IH }
end
definition sigma_colim_rec_point [unfold 10] /- g -/ {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type}
(e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩)
(w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x))
{n : } {a : A n} (x : seq_colim_over g (ι f a)) : E ⟨ι f a, x⟩ :=
begin
induction x with k x k x,
{ exact g_star g e x },
{ apply pathover_of_pathover_ap E (dpair (ι f a)),
exact g_star_path_right g e w k x }
end
definition sigma_colim_rec {E : (Σ(x : seq_colim f), seq_colim_over g x) → Type}
(e : Π⦃n⦄ ⦃a : A n⦄ (x : P a), E ⟨ι f a, ιo g x⟩)
(w : Π⦃n⦄ ⦃a : A n⦄ (x : P a), pathover E (e (g x)) (glue' g x) (e x))
(v : Σ(x : seq_colim f), seq_colim_over g x) : E v :=
begin
induction v with x y,
induction x with n a n a,
{ exact sigma_colim_rec_point g e w y },
{ apply pi_pathover_left', intro x,
refine change_path (whisker_left _ !ap_inv ⬝ !con_inv_cancel_right)
(_ ⬝o pathover_ap E (dpair _) (apd (sigma_colim_rec_point g e w) !seq_colim_over_glue⁻¹)),
/- we can simplify the squareover we need to fill a bit if we apply this rule here -/
-- refine change_path (ap (sigma_eq (glue f a)) !pathover_of_tr_eq_eq_concato ⬝ !sigma_eq_con ⬝ whisker_left _ !ap_dpair⁻¹) _,
induction x with k x k x,
{ exact change_path !glue_star_eq (g_star_path_left g e w x) },
-- { exact g_star_path_left g e w x },
{ apply pathover_pathover, esimp,
refine _ ⬝hop (ap (pathover_ap E _) (apd_compose2 (sigma_colim_rec_point g e w) _ _) ⬝
pathover_ap_pathover_of_pathover_ap E (dpair (ι f a)) (seq_colim_over_equiv g a) _)⁻¹,
apply squareover_change_path_right',
refine _ ⬝hop !pathover_ap_change_path⁻¹ ⬝ ap (pathover_ap E _)
(apd02 _ !seq_colim_over_equiv_glue⁻¹),
apply squareover_change_path_right,
refine _ ⬝hop (ap (pathover_ap E _) (!apd_con ⬝ (!apd_ap ◾o idp)) ⬝ !pathover_ap_cono)⁻¹,
apply squareover_change_path_right',
apply move_right_of_top_over,
refine _ ⬝hop (ap (pathover_ap E _) !rec_glue ⬝ to_right_inv !pathover_compose _)⁻¹,
refine ap (pathover_ap E _) !rec_glue ⬝ to_right_inv !pathover_compose _ ⬝pho _,
refine _ ⬝hop !equiv_rect_comp⁻¹,
exact (g_star_path_right_step g e w k x @(g_star_path_right g e w k)).2 }}
end
/- We now define the map back, and show using this induction principle that the composites are the identity -/
variable {P}
definition colim_sigma_of_sigma_colim_constructor [unfold 7] (p : seq_colim_over g (ι f a))
: seq_colim (seq_diagram_sigma g) :=
begin
induction p with k p k p,
{ exact ι _ ⟨rep f k a, p⟩},
{ apply glue}
end
definition colim_sigma_of_sigma_colim_path1 /- μ -/ {k : } (p : P (rep f k (f a))) :
ι (seq_diagram_sigma g) ⟨rep f k (f a), p⟩ =
ι (seq_diagram_sigma g) ⟨rep f (succ k) a, transporto P (rep_f f k a) p⟩ :=
begin
apply apd0111 (λn a p, ι' (seq_diagram_sigma g) n ⟨a, p⟩) (succ_add n k) (rep_f f k a),
apply pathover_tro
end
definition colim_sigma_of_sigma_colim_path2 {k : } (p : P (rep f k (f a))) :
square (colim_sigma_of_sigma_colim_path1 g (g p)) (colim_sigma_of_sigma_colim_path1 g p)
(ap (colim_sigma_of_sigma_colim_constructor g) (glue (seq_diagram_of_over g (f a)) p))
(ap (λx, colim_sigma_of_sigma_colim_constructor g (shift_down (seq_diagram_of_over g a)
(seq_colim_functor (λk, transporto P (rep_f f k a)) (λk p, rep_f_equiv_natural g p) x)))
(glue (seq_diagram_of_over g (f a)) p)) :=
begin
refine !elim_glue ⬝ph _,
refine _ ⬝hp (ap_compose' (colim_sigma_of_sigma_colim_constructor g) _ _)⁻¹,
refine _ ⬝hp ap02 _ !seq_colim_over_equiv_glue⁻¹,
refine _ ⬝hp !ap_con⁻¹,
refine _ ⬝hp !ap_compose' ◾ !elim_glue⁻¹,
refine _ ⬝pv whisker_rt _ (natural_square0111 P (pathover_tro (rep_f f k a) p) g
(λn a p, glue (seq_diagram_sigma g) ⟨a, p⟩)),
refine _ ⬝ whisker_left _ (ap02 _ !inv_inv⁻¹ ⬝ !ap_inv),
symmetry, apply apd0111_precompose
end
definition colim_sigma_of_sigma_colim [unfold 5] (v : Σ(x : seq_colim f), seq_colim_over g x)
: seq_colim (seq_diagram_sigma g) :=
begin
induction v with x p,
induction x with n a n a,
{ exact colim_sigma_of_sigma_colim_constructor g p },
apply arrow_pathover_constant_right, intro x, esimp at x,
refine _ ⬝ ap (colim_sigma_of_sigma_colim_constructor g) !seq_colim_over_glue⁻¹,
induction x with k p k p,
{ exact colim_sigma_of_sigma_colim_path1 g p },
apply eq_pathover, apply colim_sigma_of_sigma_colim_path2
end
/- TODO: prove and merge these theorems -/
definition colim_sigma_of_sigma_colim_glue' [unfold 5] (p : P a)
: ap (colim_sigma_of_sigma_colim g) (glue' g p) = glue (seq_diagram_sigma g) ⟨a, p⟩ :=
begin
refine !ap_dpair_eq_dpair ⬝ _,
refine !apd011_eq_apo11_apd ⬝ _,
refine ap (λx, apo11_constant_right x _) !rec_glue ⬝ _,
refine !apo11_arrow_pathover_constant_right ⬝ _, esimp,
refine whisker_right _ !idp_con ⬝ _,
rewrite [▸*, tr_eq_of_pathover_concato_eq, ap_con, ↑glue_over,
to_right_inv !pathover_equiv_tr_eq, ap_inv, inv_con_cancel_left],
apply elim_glue
end
theorem colim_sigma_of_sigma_colim_of_colim_sigma (a : seq_colim (seq_diagram_sigma g)) :
colim_sigma_of_sigma_colim g (sigma_colim_of_colim_sigma g a) = a :=
begin
induction a with n v n v,
{ induction v with a p, reflexivity },
{ induction v with a p, esimp, apply eq_pathover_id_right, apply hdeg_square,
refine ap_compose (colim_sigma_of_sigma_colim g) _ _ ⬝ _,
refine ap02 _ !elim_glue ⬝ _, exact colim_sigma_of_sigma_colim_glue' g p }
end
theorem sigma_colim_of_colim_sigma_of_sigma_colim (v : Σ(x : seq_colim f), seq_colim_over g x)
: sigma_colim_of_colim_sigma g (colim_sigma_of_sigma_colim g v) = v :=
begin
revert v, refine sigma_colim_rec _ _ _,
{ intro n a x, reflexivity },
{ intro n a x, apply eq_pathover_id_right, apply hdeg_square,
refine ap_compose (sigma_colim_of_colim_sigma g) _ _ ⬝ _,
refine ap02 _ (colim_sigma_of_sigma_colim_glue' g x) ⬝ _,
apply elim_glue }
end
variable (P)
definition sigma_seq_colim_over_equiv [constructor]
: (Σ(x : seq_colim f), seq_colim_over g x) ≃ seq_colim (seq_diagram_sigma g) :=
equiv.MK (colim_sigma_of_sigma_colim g)
(sigma_colim_of_colim_sigma g)
(colim_sigma_of_sigma_colim_of_colim_sigma g)
(sigma_colim_of_colim_sigma_of_sigma_colim g)
end over
definition seq_colim_id_equiv_seq_colim_id0 (a₀ a₁ : A 0) :
seq_colim (id_seq_diagram f 0 a₀ a₁) ≃ seq_colim (id0_seq_diagram f a₀ a₁) :=
seq_colim_equiv
(λn, !lrep_eq_lrep_irrel (nat.zero_add n))
(λn p, !lrep_eq_lrep_irrel_natural)
definition kshift_equiv_inv_incl_kshift_diag {n k : } (x : A (n + k)) :
kshift_equiv_inv f n (ι' (kshift_diag f n) k x) = ι f x :=
begin
revert A f k x, induction n with n IH: intro A f k x,
{ exact apd011 (ι' f) !nat.zero_add⁻¹ !pathover_tr⁻¹ᵒ },
{ exact !IH ⬝ apd011 (ι' f) !succ_add⁻¹ !pathover_tr⁻¹ᵒ }
end
definition incl_kshift_diag {n k : } (x : A (n + k)) :
ι' (kshift_diag f n) k x = kshift_equiv f n (ι f x) :=
eq_inv_of_eq (kshift_equiv_inv_incl_kshift_diag f x)
definition incl_kshift_diag0 {n : } (x : A n) :
ι' (kshift_diag f n) 0 x = kshift_equiv f n (ι f x) :=
incl_kshift_diag f x
definition seq_colim_eq_equiv0' (a₀ a₁ : A 0) :
ι f a₀ = ι f a₁ ≃ seq_colim (id_seq_diagram f 0 a₀ a₁) :=
begin
refine total_space_method2 (ι f a₀) (seq_colim_over (id0_seq_diagram_over f a₀))
_ _ (ι f a₁) ⬝e _,
{ apply @(is_trunc_equiv_closed_rev _ (sigma_seq_colim_over_equiv _ _)),
apply is_contr_seq_colim },
{ exact ιo _ idp },
/-
In the next equivalence we have to show that
seq_colim_over (id0_seq_diagram_over f a₀) (ι f a₁) ≃ seq_colim (id_seq_diagram f 0 a₀ a₁).
This looks trivial, because both of them reduce to
seq_colim (f^{0 ≤ 0+k}(a₀) = f^{0 ≤ 0+k}(a₁), ap_f).
However, not all proofs of these inequalities are definitionally equal. 3 of them are proven by
zero_le : 0 ≤ n,
but one of them (the RHS of seq_colim_over (id0_seq_diagram_over f a₀) (ι f a₁)) uses
le_add_right : n ≤ n+k
Alternatively, we could redefine le_add_right so that for n=0, it reduces to `zero_le (0+k)`.
-/
{ refine seq_colim_equiv (λn, eq_equiv_eq_closed !lrep_irrel idp) _,
intro n p, refine whisker_right _ (!lrep_irrel2⁻² ⬝ !ap_inv⁻¹) ⬝ !ap_con⁻¹ }
end
definition seq_colim_eq_equiv0 (a₀ a₁ : A 0) : ι f a₀ = ι f a₁ ≃ seq_colim (id0_seq_diagram f a₀ a₁) :=
seq_colim_eq_equiv0' f a₀ a₁ ⬝e seq_colim_id_equiv_seq_colim_id0 f a₀ a₁
definition seq_colim_eq_equiv {n : } (a₀ a₁ : A n) :
ι f a₀ = ι f a₁ ≃ seq_colim (id_seq_diagram f n a₀ a₁) :=
eq_equiv_fn_eq_of_equiv (kshift_equiv f n) (ι f a₀) (ι f a₁) ⬝e
eq_equiv_eq_closed (incl_kshift_diag0 f a₀)⁻¹ (incl_kshift_diag0 f a₁)⁻¹ ⬝e
seq_colim_eq_equiv0' (kshift_diag f n) a₀ a₁ ⬝e
@seq_colim_equiv _ _ _ (λk, ap (@f _))
(λm, eq_equiv_eq_closed !lrep_kshift_diag !lrep_kshift_diag)
(λm p, whisker_right _ (whisker_right _ !ap_inv⁻¹ ⬝ !ap_con⁻¹) ⬝ !ap_con⁻¹) ⬝e
seq_colim_equiv
(λm, !lrep_eq_lrep_irrel (ap (add n) (nat.zero_add m)))
begin
intro m q,
refine _ ⬝ lrep_eq_lrep_irrel_natural f (le_add_right n m) (ap (add n) (nat.zero_add m)) q,
exact ap (λx, lrep_eq_lrep_irrel f _ _ _ _ x _) !is_prop.elim
end
open algebra
theorem is_trunc_seq_colim [instance] (k : ℕ₋₂) [H : Πn, is_trunc k (A n)] :
is_trunc k (seq_colim f) :=
begin
revert A f H, induction k with k IH: intro A f H,
{ apply is_contr_seq_colim },
{ apply is_trunc_succ_intro, intro x y,
induction x using seq_colim.rec_prop with n a,
induction y using seq_colim.rec_prop with m a',
apply is_trunc_equiv_closed,
exact eq_equiv_eq_closed (lrep_glue _ (le_max_left n m) _) (lrep_glue _ (le_max_right n m) _),
apply is_trunc_equiv_closed_rev,
apply seq_colim_eq_equiv,
apply IH, intro l, apply is_trunc_eq }
end
definition seq_colim_trunc_of_trunc_seq_colim [unfold 4] (k : ℕ₋₂) (x : trunc k (seq_colim f)) :
seq_colim (trunc_diagram k f) :=
begin induction x with x, exact seq_colim_functor (λn, tr) (λn y, idp) x end
definition trunc_seq_colim_of_seq_colim_trunc [unfold 4] (k : ℕ₋₂)
(x : seq_colim (trunc_diagram k f)) : trunc k (seq_colim f) :=
begin
induction x with n x n x,
{ induction x with a, exact tr (ι f a) },
{ induction x with a, exact ap tr (glue f a) }
end
definition trunc_seq_colim_equiv [constructor] (k : ℕ₋₂) :
trunc k (seq_colim f) ≃ seq_colim (trunc_diagram k f) :=
equiv.MK (seq_colim_trunc_of_trunc_seq_colim f k) (trunc_seq_colim_of_seq_colim_trunc f k)
abstract begin
intro x, induction x with n x n x,
{ induction x with a, reflexivity },
{ induction x with a, apply eq_pathover_id_right, apply hdeg_square,
refine ap_compose (seq_colim_trunc_of_trunc_seq_colim f k) _ _ ⬝ ap02 _ !elim_glue ⬝ _,
refine !ap_compose'⁻¹ ⬝ !elim_glue ⬝ _, exact !idp_con }
end end
abstract begin
intro x, induction x with x, induction x with n a n a,
{ reflexivity },
{ apply eq_pathover, apply hdeg_square,
refine ap_compose (trunc_seq_colim_of_seq_colim_trunc f k) _ _ ⬝ ap02 _ !elim_glue ⬝ _,
refine !ap_compose'⁻¹ ⬝ !elim_glue }
end end
theorem is_conn_seq_colim [instance] (k : ℕ₋₂) [H : Πn, is_conn k (A n)] :
is_conn k (seq_colim f) :=
is_trunc_equiv_closed_rev -2 (trunc_seq_colim_equiv f k)
/- the colimit of a sequence of fibers is the fiber of the functorial action of the colimit -/
definition domain_seq_colim_functor {A A' : → Type} {f : seq_diagram A}
{f' : seq_diagram A'} (τ : Πn, A' n → A n)
(p : Π⦃n⦄, τ (n+1) ∘ @f' n ~ @f n ∘ @τ n) :
(Σ(x : seq_colim f), seq_colim_over (seq_diagram_over_fiber τ p) x) ≃ seq_colim f' :=
begin
transitivity seq_colim (seq_diagram_sigma (seq_diagram_over_fiber τ p)),
exact sigma_seq_colim_over_equiv _ (seq_diagram_over_fiber τ p),
exact seq_colim_equiv (λn, sigma_fiber_equiv (τ n)) (λn x, idp)
end
definition fiber_seq_colim_functor {A A' : → Type} {f : seq_diagram A}
{f' : seq_diagram A'} (τ : Πn, A' n → A n)
(p : Π⦃n⦄, τ (n+1) ∘ @f' n ~ @f n ∘ @τ n) {n : } (a : A n) :
fiber (seq_colim_functor τ p) (ι f a) ≃ seq_colim (seq_diagram_fiber τ p a) :=
begin
refine _ ⬝e fiber_pr1 (seq_colim_over (seq_diagram_over_fiber τ p)) (ι f a),
apply fiber_equiv_of_triangle (domain_seq_colim_functor τ p)⁻¹ᵉ,
refine _ ⬝hty λx, (colim_sigma_triangle _ _)⁻¹,
apply homotopy_inv_of_homotopy_pre (seq_colim_equiv _ _)
(seq_colim_functor _ _) (seq_colim_functor _ _),
refine (λx, !seq_colim_functor_compose⁻¹) ⬝hty _,
refine seq_colim_functor_homotopy _ _,
intro n x, exact point_eq x.2,
intro n x, induction x with x y, induction y with y q, induction q,
apply square_of_eq, refine !idp_con⁻¹
end
definition fiber_seq_colim_functor0 {A A' : → Type} {f : seq_diagram A}
{f' : seq_diagram A'} (τ : Πn, A' n → A n)
(p : Π⦃n⦄, τ (n+1) ∘ @f' n ~ @f n ∘ @τ n) (a : A 0) :
fiber (seq_colim_functor τ p) (ι f a) ≃ seq_colim (seq_diagram_fiber0 τ p a) :=
fiber_seq_colim_functor τ p a ⬝e
seq_colim_equiv
(λn, equiv_apd011 (λx y, fiber (τ x) y) (rep_pathover_rep0 f a))
(λn x, sorry)
-- maybe use fn_tro_eq_tro_fn2
variables {f f'}
definition fiber_inclusion (x : seq_colim f) :
fiber (ι' f 0) x ≃ fiber (seq_colim_functor (rep0 f) (λn a, idp)) x :=
fiber_equiv_of_triangle (seq_colim_constant_seq (A 0))⁻¹ᵉ homotopy.rfl
theorem is_trunc_fun_seq_colim_functor (k : ℕ₋₂) (H : Πn, is_trunc_fun k (@τ n)) :
is_trunc_fun k (seq_colim_functor τ p) :=
begin
intro x, induction x using seq_colim.rec_prop,
exact is_trunc_equiv_closed_rev k (fiber_seq_colim_functor τ p a),
end
open is_conn
theorem is_conn_fun_seq_colim_functor (k : ℕ₋₂) (H : Πn, is_conn_fun k (@τ n)) :
is_conn_fun k (seq_colim_functor τ p) :=
begin
intro x, induction x using seq_colim.rec_prop,
exact is_conn_equiv_closed_rev k (fiber_seq_colim_functor τ p a) _
end
variables (f f')
theorem is_trunc_fun_inclusion (k : ℕ₋₂) (H : Πn, is_trunc_fun k (@f n)) :
is_trunc_fun k (ι' f 0) :=
begin
intro x,
apply @(is_trunc_equiv_closed_rev k (fiber_inclusion x)),
apply is_trunc_fun_seq_colim_functor,
intro n, apply is_trunc_fun_lrep, exact H
end
theorem is_conn_fun_inclusion (k : ℕ₋₂) (H : Πn, is_conn_fun k (@f n)) :
is_conn_fun k (ι' f 0) :=
begin
intro x,
apply is_conn_equiv_closed_rev k (fiber_inclusion x),
apply is_conn_fun_seq_colim_functor,
intro n, apply is_conn_fun_lrep, exact H
end
/- the sequential colimit of standard finite types is -/
open fin
definition nat_of_seq_colim_fin [unfold 1] (x : seq_colim seq_diagram_fin) : :=
begin
induction x with n x n x,
{ exact x },
{ reflexivity }
end
definition seq_colim_fin_of_nat (n : ) : seq_colim seq_diagram_fin :=
ι' _ (n+1) (fin.mk n (self_lt_succ n))
definition lrep_seq_diagram_fin {n : } (x : fin n) :
lrep seq_diagram_fin (is_lt x) (fin.mk x (self_lt_succ x)) = x :=
begin
induction x with k H, esimp, induction H with n H p,
reflexivity,
exact ap (@lift_succ2 _) p
end
definition lrep_seq_diagram_fin_lift_succ {n : } (x : fin n) :
lrep_seq_diagram_fin (lift_succ2 x) = ap (@lift_succ2 _) (lrep_seq_diagram_fin x) :=
begin
induction x with k H, reflexivity
end
definition seq_colim_fin_equiv [constructor] : seq_colim seq_diagram_fin ≃ :=
equiv.MK nat_of_seq_colim_fin seq_colim_fin_of_nat
abstract begin
intro n, reflexivity
end end
abstract begin
intro x, induction x with n x n x,
{ esimp, refine (lrep_glue _ (is_lt x) _)⁻¹ ⬝ ap (ι _) (lrep_seq_diagram_fin x), },
{ apply eq_pathover_id_right,
refine ap_compose seq_colim_fin_of_nat _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
esimp, refine (square_of_eq !con_idp)⁻¹ʰ ⬝h _,
refine _ ⬝pv natural_square_tr (@glue _ (seq_diagram_fin) n) (lrep_seq_diagram_fin x),
refine ap02 _ !lrep_seq_diagram_fin_lift_succ ⬝ !ap_compose⁻¹ }
end end
/- the sequential colimit of embeddings is an embedding -/
definition seq_colim_eq_equiv0'_inv_refl (a₀ : A 0) :
(seq_colim_eq_equiv0' f a₀ a₀)⁻¹ᵉ (ι' (id_seq_diagram f 0 a₀ a₀) 0 proof (refl a₀) qed) = refl (ι f a₀) :=
begin
apply inv_eq_of_eq,
reflexivity,
end
definition is_embedding_ι (H : Πn, is_embedding (@f n)) : is_embedding (ι' f 0) :=
begin
intro x y, fapply is_equiv_of_equiv_of_homotopy,
{ symmetry, refine seq_colim_eq_equiv0' f x y ⬝e _,
apply equiv_of_is_equiseq, intro n, apply H },
{ intro p, induction p, apply seq_colim_eq_equiv0'_inv_refl }
end
end seq_colim