Spectral/homotopy/pushout.hlean
2018-01-27 19:01:42 +01:00

980 lines
40 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import ..algebra.exactness homotopy.cofiber homotopy.wedge homotopy.smash
open eq function is_trunc sigma prod lift is_equiv equiv pointed sum unit bool cofiber
namespace pushout
section
variables {TL BL TR : Type*} {f : TL →* BL} {g : TL →* TR}
{TL' BL' TR' : Type*} {f' : TL' →* BL'} {g' : TL' →* TR'}
(tl : TL ≃ TL') (bl : BL ≃* BL') (tr : TR ≃ TR')
(fh : bl ∘ f ~ f' ∘ tl) (gh : tr ∘ g ~ g' ∘ tl)
definition ppushout_functor [constructor] (tl : TL → TL') (bl : BL →* BL') (tr : TR → TR')
(fh : bl ∘ f ~ f' ∘ tl) (gh : tr ∘ g ~ g' ∘ tl) : ppushout f g →* ppushout f' g' :=
begin
fconstructor,
{ exact pushout.functor tl bl tr fh gh },
{ exact ap inl (respect_pt bl) },
end
definition ppushout_pequiv (tl : TL ≃ TL') (bl : BL ≃* BL') (tr : TR ≃ TR')
(fh : bl ∘ f ~ f' ∘ tl) (gh : tr ∘ g ~ g' ∘ tl) : ppushout f g ≃* ppushout f' g' :=
pequiv_of_equiv (pushout.equiv _ _ _ _ tl bl tr fh gh) (ap inl (respect_pt bl))
end
/-
WIP: proving that satisfying the universal property of the pushout is equivalent to
being equivalent to the pushout
-/
universe variables u₁ u₂ u₃ u₄
variables {A : Type.{u₁}} {B : Type.{u₂}} {C : Type.{u₃}} {D D' : Type.{u₄}}
{f : A → B} {g : A → C} {h : B → D} {k : C → D} (p : h ∘ f ~ k ∘ g)
{h' : B → D'} {k' : C → D'} (p' : h' ∘ f ~ k' ∘ g)
-- (f : A → B) (g : A → C) (h : B → D) (k : C → D)
include p
definition is_pushout : Type :=
Π⦃X : Type.{max u₁ u₂ u₃ u₄}⦄ (h' : B → X) (k' : C → X) (p' : h' ∘ f ~ k' ∘ g),
is_contr (Σ(l : D → X) (v : l ∘ h ~ h' × l ∘ k ~ k'),
Πa, square (prod.pr1 v (f a)) (prod.pr2 v (g a)) (ap l (p a)) (p' a))
definition cocone [reducible] (X : Type) : Type :=
Σ(v : (B → X) × (C → X)), prod.pr1 v ∘ f ~ prod.pr2 v ∘ g
definition cocone_of_map [constructor] (X : Type) (l : D → X) : cocone p X :=
⟨(l ∘ h, l ∘ k), λa, ap l (p a)⟩
-- definition cocone_of_map (X : Type) (l : D → X) : Σ(h' : B → X) (k' : C → X),
-- h' ∘ f ~ k' ∘ g :=
-- ⟨l ∘ h, l ∘ k, λa, ap l (p a)⟩
omit p
definition is_pushout2 [reducible] : Type :=
Π(X : Type.{max u₁ u₂ u₃ u₄}), is_equiv (cocone_of_map p X)
section
open sigma.ops
protected definition inv_left (H : is_pushout2 p) {X : Type} (v : cocone p X) :
(cocone_of_map p X)⁻¹ᶠ v ∘ h ~ prod.pr1 v.1 :=
ap10 (ap prod.pr1 (right_inv (cocone_of_map p X) v)..1)
protected definition inv_right (H : is_pushout2 p) {X : Type} (v : cocone p X) :
(cocone_of_map p X)⁻¹ᶠ v ∘ k ~ prod.pr2 v.1 :=
ap10 (ap prod.pr2 (right_inv (cocone_of_map p X) v)..1)
end
section
local attribute is_pushout [reducible]
definition is_prop_is_pushout : is_prop (is_pushout p) :=
_
local attribute is_pushout2 [reducible]
definition is_prop_is_pushout2 : is_prop (is_pushout2 p) :=
_
end
definition ap_eq_apd10_ap {A B : Type} {C : B → Type} (f : A → Πb, C b) {a a' : A} (p : a = a') (b : B)
: ap (λa, f a b) p = apd10 (ap f p) b :=
by induction p; reflexivity
variables (f g)
definition is_pushout2_pushout : @is_pushout2 _ _ _ _ f g inl inr glue :=
λX, to_is_equiv (pushout_arrow_equiv f g X ⬝e assoc_equiv_prod _)
definition is_equiv_of_is_pushout2_simple [constructor] {A B C D : Type.{u₁}}
{f : A → B} {g : A → C} {h : B → D} {k : C → D} (p : h ∘ f ~ k ∘ g)
{h' : B → D'} {k' : C → D'} (p' : h' ∘ f ~ k' ∘ g)
(H : is_pushout2 p) : D ≃ pushout f g :=
begin
fapply equiv.MK,
{ exact (cocone_of_map p _)⁻¹ᶠ ⟨(inl, inr), glue⟩ },
{ exact pushout.elim h k p },
{ intro x, exact sorry
},
{ apply ap10,
apply eq_of_fn_eq_fn (equiv.mk _ (H D)),
fapply sigma_eq,
{ esimp, fapply prod_eq,
apply eq_of_homotopy, intro b,
exact ap (pushout.elim h k p) (pushout.inv_left p H ⟨(inl, inr), glue⟩ b),
apply eq_of_homotopy, intro c,
exact ap (pushout.elim h k p) (pushout.inv_right p H ⟨(inl, inr), glue⟩ c) },
{ apply pi.pi_pathover_constant, intro a,
apply eq_pathover,
refine !ap_eq_apd10_ap ⬝ph _ ⬝hp !ap_eq_apd10_ap⁻¹,
refine ap (λx, apd10 x _) (ap_compose (λx, x ∘ f) pr1 _ ⬝ ap02 _ !prod_eq_pr1) ⬝ph _
⬝hp ap (λx, apd10 x _) (ap_compose (λx, x ∘ g) pr2 _ ⬝ ap02 _ !prod_eq_pr2)⁻¹,
refine apd10 !apd10_ap_precompose_dependent a ⬝ph _ ⬝hp apd10 !apd10_ap_precompose_dependent⁻¹ a,
refine apd10 !apd10_eq_of_homotopy (f a) ⬝ph _ ⬝hp apd10 !apd10_eq_of_homotopy⁻¹ (g a),
refine ap_compose (pushout.elim h k p) _ _ ⬝pv _,
refine aps (pushout.elim h k p) _ ⬝vp (!elim_glue ⬝ !ap_id⁻¹),
esimp, exact sorry
},
}
end
-- definition is_equiv_of_is_pushout2 [constructor] (H : is_pushout2 p) : D ≃ pushout f g :=
-- begin
-- fapply equiv.MK,
-- { exact down.{_ u₄} ∘ (cocone_of_map p _)⁻¹ᶠ ⟨(up ∘ inl, up ∘ inr), λa, ap up (glue a)⟩ },
-- { exact pushout.elim h k p },
-- { intro x, exact sorry
-- },
-- { intro d, apply eq_of_fn_eq_fn (equiv_lift D), esimp, revert d,
-- apply ap10,
-- apply eq_of_fn_eq_fn (equiv.mk _ (H (lift.{_ (max u₁ u₂ u₃)} D))),
-- fapply sigma_eq,
-- { esimp, fapply prod_eq,
-- apply eq_of_homotopy, intro b, apply ap up, esimp,
-- exact ap (pushout.elim h k p ∘ down.{_ u₄})
-- (pushout.inv_left p H ⟨(up ∘ inl, up ∘ inr), λa, ap up (glue a)⟩ b),
-- exact sorry },
-- { exact sorry },
-- -- note q := @eq_of_is_contr _ H''
-- -- ⟨up ∘ pushout.elim h k p ∘ down ∘ (center' H').1,
-- -- (λb, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr1 (center' H').2 b),
-- -- λc, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr2 (center' H').2 c))⟩
-- -- ⟨up, (λx, idp, λx, idp)⟩,
-- -- exact ap down (ap10 q..1 d)
-- }
-- end
/- composing pushouts -/
definition pushout_vcompose_to [unfold 8] {A B C D : Type} {f : A → B} {g : A → C} {h : B → D}
(x : pushout h (@inl _ _ _ f g)) : pushout (h ∘ f) g :=
begin
induction x with d y b,
{ exact inl d },
{ induction y with b c a,
{ exact inl (h b) },
{ exact inr c },
{ exact glue a }},
{ reflexivity }
end
definition pushout_vcompose_from [unfold 8] {A B C D : Type} {f : A → B} {g : A → C} {h : B → D}
(x : pushout (h ∘ f) g) : pushout h (@inl _ _ _ f g) :=
begin
induction x with d c a,
{ exact inl d },
{ exact inr (inr c) },
{ exact glue (f a) ⬝ ap inr (glue a) }
end
definition pushout_vcompose [constructor] {A B C D : Type} (f : A → B) (g : A → C) (h : B → D) :
pushout h (@inl _ _ _ f g) ≃ pushout (h ∘ f) g :=
begin
fapply equiv.MK,
{ exact pushout_vcompose_to },
{ exact pushout_vcompose_from },
{ intro x, induction x with d c a,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right, apply hdeg_square,
refine ap_compose pushout_vcompose_to _ _ ⬝ ap02 _ !elim_glue ⬝ _,
refine !ap_con ⬝ !elim_glue ◾ !ap_compose'⁻¹ ⬝ !idp_con ⬝ _, esimp, apply elim_glue }},
{ intro x, induction x with d y b,
{ reflexivity },
{ induction y with b c a,
{ exact glue b },
{ reflexivity },
{ apply eq_pathover, refine ap_compose pushout_vcompose_from _ _ ⬝ph _,
esimp, refine ap02 _ !elim_glue ⬝ !elim_glue ⬝ph _, apply square_of_eq, reflexivity }},
{ apply eq_pathover_id_right, esimp,
refine ap_compose pushout_vcompose_from _ _ ⬝ ap02 _ !elim_glue ⬝ph _, apply square_of_eq,
reflexivity }}
end
definition pushout_hcompose {A B C D : Type} (f : A → B) (g : A → C) (h : C → D) :
pushout (@inr _ _ _ f g) h ≃ pushout f (h ∘ g) :=
calc
pushout (@inr _ _ _ f g) h ≃ pushout h (@inr _ _ _ f g) : pushout.symm
... ≃ pushout h (@inl _ _ _ g f) :
pushout.equiv _ _ _ _ erfl erfl (pushout.symm f g) (λa, idp) (λa, idp)
... ≃ pushout (h ∘ g) f : pushout_vcompose
... ≃ pushout f (h ∘ g) : pushout.symm
definition pushout_vcompose_equiv {A B C D E : Type} (f : A → B) {g : A → C} {h : B → D}
{hf : A → D} {k : B → E} (e : E ≃ pushout f g) (p : k ~ e⁻¹ᵉ ∘ inl) (q : h ∘ f ~ hf) :
pushout h k ≃ pushout hf g :=
begin
refine _ ⬝e pushout_vcompose f g h ⬝e _,
{ fapply pushout.equiv,
reflexivity,
reflexivity,
exact e,
reflexivity,
exact homotopy_of_homotopy_inv_post e _ _ p },
{ fapply pushout.equiv,
reflexivity,
reflexivity,
reflexivity,
exact q,
reflexivity },
end
definition pushout_hcompose_equiv {A B C D E : Type} {f : A → B} (g : A → C) {h : C → E}
{hg : A → E} {k : C → D} (e : D ≃ pushout f g) (p : k ~ e⁻¹ᵉ ∘ inr) (q : h ∘ g ~ hg) :
pushout k h ≃ pushout f hg :=
calc
pushout k h ≃ pushout h k : pushout.symm
... ≃ pushout hg f : by exact pushout_vcompose_equiv _ (e ⬝e pushout.symm f g) p q
... ≃ pushout f hg : pushout.symm
definition pushout_of_equiv_left_to [unfold 6] {A B C : Type} {f : A ≃ B} {g : A → C}
(x : pushout f g) : C :=
begin
induction x with b c a,
{ exact g (f⁻¹ b) },
{ exact c },
{ exact ap g (left_inv f a) }
end
definition pushout_of_equiv_left [constructor] {A B C : Type} (f : A ≃ B) (g : A → C) :
pushout f g ≃ C :=
begin
fapply equiv.MK,
{ exact pushout_of_equiv_left_to },
{ exact inr },
{ intro c, reflexivity },
{ intro x, induction x with b c a,
{ exact (glue (f⁻¹ b))⁻¹ ⬝ ap inl (right_inv f b) },
{ reflexivity },
{ apply eq_pathover_id_right, refine ap_compose inr _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
apply move_top_of_left, apply move_left_of_bot,
refine ap02 _ (adj f _) ⬝ !ap_compose⁻¹ ⬝pv _ ⬝vp !ap_compose,
apply natural_square_tr }}
end
definition pushout_of_equiv_right [constructor] {A B C : Type} (f : A → B) (g : A ≃ C) :
pushout f g ≃ B :=
calc
pushout f g ≃ pushout g f : pushout.symm f g
... ≃ B : pushout_of_equiv_left g f
-- todo: define pushout.equiv (renamed to pushout_equiv_pushout) using this
variables {A₁ B₁ C₁ A₂ B₂ C₂ A₃ B₃ C₃ : Type} {f₁ : A₁ → B₁} {g₁ : A₁ → C₁}
{f₂ : A₂ → B₂} {g₂ : A₂ → C₂} {f₃ : A₃ → B₃} {g₃ : A₃ → C₃}
{h₂ : A₂ → A₃} {h₁ : A₁ → A₂}
{i₂ : B₂ → B₃} {i₁ : B₁ → B₂}
{j₂ : C₂ → C₃} {j₁ : C₁ → C₂}
(p₂ : i₂ ∘ f₂ ~ f₃ ∘ h₂) (q₂ : j₂ ∘ g₂ ~ g₃ ∘ h₂)
(p₁ : i₁ ∘ f₁ ~ f₂ ∘ h₁) (q₁ : j₁ ∘ g₁ ~ g₂ ∘ h₁)
definition pushout_functor_compose :
pushout.functor (h₂ ∘ h₁) (i₂ ∘ i₁) (j₂ ∘ j₁) (p₁ ⬝htyv p₂) (q₁ ⬝htyv q₂) ~
pushout.functor h₂ i₂ j₂ p₂ q₂ ∘ pushout.functor h₁ i₁ j₁ p₁ q₁ :=
begin
intro x, induction x with b c a,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover, apply hdeg_square, esimp,
refine !elim_glue ⬝ whisker_right _ (!ap_con ⬝ !ap_compose'⁻¹ ◾ idp) ◾
(ap02 _ !con_inv ⬝ !ap_con ⬝ whisker_left _ (ap02 _ !ap_inv⁻¹ ⬝ !ap_compose'⁻¹)) ⬝ _ ⬝
(ap_compose (pushout.functor h₂ i₂ j₂ p₂ q₂) _ _ ⬝ ap02 _ !elim_glue)⁻¹,
refine _ ⬝ (!ap_con ⬝ (!ap_con ⬝ !ap_compose'⁻¹ ◾ !elim_glue) ◾ !ap_compose'⁻¹)⁻¹ᵖ,
refine !con.assoc⁻¹ ⬝ whisker_right _ _,
exact whisker_right _ !con.assoc ⬝ !con.assoc }
end
variables {p₁ q₁}
definition pushout_functor_homotopy_constant {p₁' : i₁ ∘ f₁ ~ f₂ ∘ h₁} {q₁' : j₁ ∘ g₁ ~ g₂ ∘ h₁}
(p : p₁ ~ p₁') (q : q₁ ~ q₁') :
pushout.functor h₁ i₁ j₁ p₁ q₁ ~ pushout.functor h₁ i₁ j₁ p₁' q₁' :=
begin
induction p, induction q, reflexivity
end
definition pushout_functor_homotopy {h₁ h₂ : A₁ → A₂} {i₁ i₂ : B₁ → B₂} {j₁ j₂ : C₁ → C₂}
{p₁ : i₁ ∘ f₁ ~ f₂ ∘ h₁} {q₁ : j₁ ∘ g₁ ~ g₂ ∘ h₁}
{p₂ : i₂ ∘ f₁ ~ f₂ ∘ h₂} {q₂ : j₂ ∘ g₁ ~ g₂ ∘ h₂}
(r : h₁ ~ h₂) (s : i₁ ~ i₂) (t : j₁ ~ j₂)
(u : r ⬝htyh p₁ ~ p₂ ⬝htyh s) (v : r ⬝htyh q₁ ~ q₂ ⬝htyh t) :
pushout.functor h₁ i₁ j₁ p₁ q₁ ~ pushout.functor h₂ i₂ j₂ p₂ q₂ :=
begin
induction r, induction s, induction t, apply pushout_functor_homotopy_constant,
{ exact (rfl_hhconcat p₁)⁻¹ʰᵗʸ ⬝hty u ⬝hty hhconcat_rfl p₂ },
exact (rfl_hhconcat q₁)⁻¹ʰᵗʸ ⬝hty v ⬝hty hhconcat_rfl q₂
end
/- pushout where one map is constant is a cofiber -/
definition pushout_const_equiv_to [unfold 6] {A B C : Type} {f : A → B} {c₀ : C}
(x : pushout f (const A c₀)) : cofiber (sum_functor f (const unit c₀)) :=
begin
induction x with b c a,
{ exact !cod (sum.inl b) },
{ exact !cod (sum.inr c) },
{ exact glue (sum.inl a) ⬝ (glue (sum.inr ⋆))⁻¹ }
end
definition pushout_const_equiv_from [unfold 6] {A B C : Type} {f : A → B} {c₀ : C}
(x : cofiber (sum_functor f (const unit c₀))) : pushout f (const A c₀) :=
begin
induction x with v v,
{ induction v with b c, exact inl b, exact inr c },
{ exact inr c₀ },
{ induction v with a u, exact glue a, reflexivity }
end
definition pushout_const_equiv [constructor] {A B C : Type} (f : A → B) (c₀ : C) :
pushout f (const A c₀) ≃ cofiber (sum_functor f (const unit c₀)) :=
begin
fapply equiv.MK,
{ exact pushout_const_equiv_to },
{ exact pushout_const_equiv_from },
{ intro x, induction x with v v,
{ induction v with b c, reflexivity, reflexivity },
{ exact glue (sum.inr ⋆) },
{ apply eq_pathover_id_right,
refine ap_compose pushout_const_equiv_to _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
induction v with a u,
{ refine !elim_glue ⬝ph _, apply whisker_bl, exact hrfl },
{ induction u, exact square_of_eq idp }}},
{ intro x, induction x with c b a,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right, apply hdeg_square,
refine ap_compose pushout_const_equiv_from _ _ ⬝ ap02 _ !elim_glue ⬝ _,
refine !ap_con ⬝ !elim_glue ◾ (!ap_inv ⬝ !elim_glue⁻²) }}
end
/- wedge is the cofiber of the map 2 -> A + B -/
-- move to sum
definition sum_of_bool [unfold 3] (A B : Type*) (b : bool) : A + B :=
by induction b; exact sum.inl pt; exact sum.inr pt
definition psum_of_pbool [constructor] (A B : Type*) : pbool →* (A +* B) :=
pmap.mk (sum_of_bool A B) idp
-- move to wedge
definition wedge_equiv_pushout_sum [constructor] (A B : Type*) :
wedge A B ≃ cofiber (sum_of_bool A B) :=
begin
refine pushout_const_equiv _ _ ⬝e _,
fapply pushout.equiv,
exact bool_equiv_unit_sum_unit⁻¹ᵉ,
reflexivity,
reflexivity,
intro x, induction x: reflexivity,
intro x, induction x with u u: induction u; reflexivity
end
section
open prod.ops
/- products preserve pushouts -/
definition pushout_prod_equiv_to [unfold 7] {A B C D : Type} {f : A → B} {g : A → C}
(xd : pushout f g × D) : pushout (prod_functor f (@id D)) (prod_functor g id) :=
begin
induction xd with x d, induction x with b c a,
{ exact inl (b, d) },
{ exact inr (c, d) },
{ exact glue (a, d) }
end
definition pushout_prod_equiv_from [unfold 7] {A B C D : Type} {f : A → B} {g : A → C}
(x : pushout (prod_functor f (@id D)) (prod_functor g id)) : pushout f g × D :=
begin
induction x with bd cd ad,
{ exact (inl bd.1, bd.2) },
{ exact (inr cd.1, cd.2) },
{ exact prod_eq (glue ad.1) idp }
end
definition pushout_prod_equiv {A B C D : Type} (f : A → B) (g : A → C) :
pushout f g × D ≃ pushout (prod_functor f (@id D)) (prod_functor g id) :=
begin
fapply equiv.MK,
{ exact pushout_prod_equiv_to },
{ exact pushout_prod_equiv_from },
{ intro x, induction x with bd cd ad,
{ induction bd, reflexivity },
{ induction cd, reflexivity },
{ induction ad with a d, apply eq_pathover_id_right, apply hdeg_square,
refine ap_compose pushout_prod_equiv_to _ _ ⬝ ap02 _ !elim_glue ⬝ _, esimp,
exact !ap_prod_elim ⬝ !idp_con ⬝ !elim_glue }},
{ intro xd, induction xd with x d, induction x with b c a,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover, apply hdeg_square,
refine ap_compose (pushout_prod_equiv_from ∘ pushout_prod_equiv_to) _ _ ⬝ _,
refine ap02 _ !ap_prod_mk_left ⬝ !ap_compose ⬝ _,
refine ap02 _ (!ap_prod_elim ⬝ !idp_con ⬝ !elim_glue) ⬝ _,
refine !elim_glue ⬝ !ap_prod_mk_left⁻¹ }}
end
end
/- interaction of pushout and sums -/
definition pushout_to_sum [unfold 8] {A B C : Type} {f : A → B} {g : A → C} (D : Type) (c₀ : C)
(x : pushout f g) : pushout (sum_functor f (@id D)) (sum.rec g (λd, c₀)) :=
begin
induction x with b c a,
{ exact inl (sum.inl b) },
{ exact inr c },
{ exact glue (sum.inl a) }
end
definition pushout_from_sum [unfold 8] {A B C : Type} {f : A → B} {g : A → C} (D : Type) (c₀ : C)
(x : pushout (sum_functor f (@id D)) (sum.rec g (λd, c₀))) : pushout f g :=
begin
induction x with x c x,
{ induction x with b d, exact inl b, exact inr c₀ },
{ exact inr c },
{ induction x with a d, exact glue a, reflexivity }
end
/- The pushout of B <-- A --> C is the same as the pushout of B + D <-- A + D --> C -/
definition pushout_sum_cancel_equiv [constructor] {A B C : Type} (f : A → B) (g : A → C)
(D : Type) (c₀ : C) : pushout f g ≃ pushout (sum_functor f (@id D)) (sum.rec g (λd, c₀)) :=
begin
fapply equiv.MK,
{ exact pushout_to_sum D c₀ },
{ exact pushout_from_sum D c₀ },
{ intro x, induction x with x c x,
{ induction x with b d, reflexivity, esimp, exact (glue (sum.inr d))⁻¹ },
{ reflexivity },
{ apply eq_pathover_id_right,
refine ap_compose (pushout_to_sum D c₀) _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
induction x with a d: esimp,
{ exact hdeg_square !elim_glue },
{ exact square_of_eq !con.left_inv }}},
{ intro x, induction x with b c a,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right, apply hdeg_square,
refine ap_compose (pushout_from_sum D c₀) _ _ ⬝ ap02 _ !elim_glue ⬝ !elim_glue }}
end
end pushout
namespace pushout
variables {A A' B B' C C' : Type} {f : A → B} {g : A → C} {f' : A' → B'} {g' : A' → C'}
definition sum_pushout_of_pushout_sum [unfold 11]
(x : pushout (sum_functor f f') (sum_functor g g')) : pushout f g ⊎ pushout f' g' :=
begin
induction x with b c a,
{ exact sum_functor inl inl b },
{ exact sum_functor inr inr c },
{ induction a with a a', exact ap sum.inl (glue a), exact ap sum.inr (glue a') }
end
definition pushout_sum_of_sum_pushout [unfold 11]
(x : pushout f g ⊎ pushout f' g') : pushout (sum_functor f f') (sum_functor g g') :=
begin
induction x with x x,
{ exact pushout.functor sum.inl sum.inl sum.inl homotopy.rfl homotopy.rfl x },
{ exact pushout.functor sum.inr sum.inr sum.inr homotopy.rfl homotopy.rfl x }
end
variables (f g f' g')
/-
do we want to define this in terms of sigma_pushout? One possible disadvantage is that the
computation on glue is less convenient
-/
definition pushout_sum_equiv_sum_pushout [constructor] :
pushout (sum_functor f f') (sum_functor g g') ≃ pushout f g ⊎ pushout f' g' :=
equiv.MK sum_pushout_of_pushout_sum pushout_sum_of_sum_pushout
abstract begin
intro x, induction x with x x,
{ induction x,
{ reflexivity },
{ reflexivity },
apply eq_pathover, apply hdeg_square, esimp,
exact ap_compose sum_pushout_of_pushout_sum _ _ ⬝
ap02 _ (!elim_glue ⬝ !con_idp ⬝ !idp_con) ⬝ !elim_glue },
{ induction x,
{ reflexivity },
{ reflexivity },
apply eq_pathover, apply hdeg_square, esimp,
exact ap_compose sum_pushout_of_pushout_sum _ _ ⬝
ap02 _ (!elim_glue ⬝ !con_idp ⬝ !idp_con) ⬝ !elim_glue },
end end
abstract begin
intro x, induction x with b c a,
{ induction b: reflexivity },
{ induction c: reflexivity },
{ apply eq_pathover_id_right,
refine ap_compose pushout_sum_of_sum_pushout _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
induction a with a a':
(apply hdeg_square; refine !ap_compose'⁻¹ ⬝ !elim_glue ⬝ !con_idp ⬝ !idp_con) }
end end
variables {f g f' g'}
variables {D E F D' E' F' : Type} {h : D → E} {i : D → F} {h' : D' → E'} {i' : D' → F'}
{j : A → D} {k : B → E} {l : C → F} {j' : A' → D'} {k' : B' → E'} {l' : C' → F'}
{j₂ : A' → D} {k₂ : B' → E} {l₂ : C' → F}
(s : hsquare f h j k) (t : hsquare g i j l)
(s' : hsquare f' h' j' k') (t' : hsquare g' i' j' l')
(s₂ : hsquare f' h j₂ k₂) (t₂ : hsquare g' i j₂ l₂)
definition sum_rec_pushout_sum_equiv_sum_pushout :
sum.rec (pushout.functor j k l s t) (pushout.functor j₂ k₂ l₂ s₂ t₂) ∘
pushout_sum_equiv_sum_pushout f g f' g' ~
pushout.functor (sum.rec j j₂) (sum.rec k k₂) (sum.rec l l₂)
(sum_rec_hsquare s s₂) (sum_rec_hsquare t t₂) :=
begin
intro x, induction x with b c a,
{ induction b with b b': reflexivity },
{ induction c with c c': reflexivity },
{ exact abstract begin apply eq_pathover,
refine !ap_compose ⬝ ap02 _ !elim_glue ⬝ph _,
induction a with a a': exact hdeg_square (!ap_compose'⁻¹ ⬝ !elim_glue ⬝ !elim_glue⁻¹)
end end }
end
definition pushout_sum_equiv_sum_pushout_natural :
hsquare
(pushout.functor (j +→ j') (k +→ k') (l +→ l')
(sum_functor_hsquare s s') (sum_functor_hsquare t t'))
(pushout.functor j k l s t +→ pushout.functor j' k' l' s' t')
(pushout_sum_equiv_sum_pushout f g f' g')
(pushout_sum_equiv_sum_pushout h i h' i') :=
begin
intro x, induction x with b c a,
{ induction b with b b': reflexivity },
{ induction c with c c': reflexivity },
{ exact abstract begin apply eq_pathover,
refine !ap_compose ⬝ ap02 _ !elim_glue ⬝ph _ ⬝hp (!ap_compose ⬝ ap02 _ !elim_glue)⁻¹,
refine !ap_con ⬝ (!ap_con ⬝ !ap_compose'⁻¹ ◾ !elim_glue) ◾ (!ap_compose'⁻¹ ⬝ !ap_inv) ⬝ph _,
induction a with a a',
{ apply hdeg_square, refine !ap_compose'⁻¹ ◾ idp ◾ !ap_compose'⁻¹⁻² ⬝ _ ⬝ !ap_compose',
refine _ ⬝ (ap_compose sum.inl _ _ ⬝ ap02 _ !elim_glue)⁻¹,
exact (ap_compose sum.inl _ _ ◾ idp ⬝ !ap_con⁻¹) ◾ (!ap_inv⁻¹ ⬝ ap_compose sum.inl _ _) ⬝
!ap_con⁻¹ },
{ apply hdeg_square, refine !ap_compose'⁻¹ ◾ idp ◾ !ap_compose'⁻¹⁻² ⬝ _ ⬝ !ap_compose',
refine _ ⬝ (ap_compose sum.inr _ _ ⬝ ap02 _ !elim_glue)⁻¹,
exact (ap_compose sum.inr _ _ ◾ idp ⬝ !ap_con⁻¹) ◾ (!ap_inv⁻¹ ⬝ ap_compose sum.inr _ _) ⬝
!ap_con⁻¹ } end end }
end
end pushout
namespace pushout
open sigma sigma.ops
variables {X : Type} {A B C : X → Type} {f : Πx, A x → B x} {g : Πx, A x → C x}
definition sigma_pushout_of_pushout_sigma [unfold 7]
(x : pushout (total f) (total g)) : Σx, pushout (f x) (g x) :=
begin
induction x with b c a,
{ exact total (λx, inl) b },
{ exact total (λx, inr) c },
{ exact sigma_eq_right (glue a.2) }
end
definition pushout_sigma_of_sigma_pushout [unfold 7]
(x : Σx, pushout (f x) (g x)) : pushout (total f) (total g) :=
pushout.functor (dpair x.1) (dpair x.1) (dpair x.1) homotopy.rfl homotopy.rfl x.2
variables (f g)
definition pushout_sigma_equiv_sigma_pushout [constructor] :
pushout (total f) (total g) ≃ Σx, pushout (f x) (g x) :=
equiv.MK sigma_pushout_of_pushout_sigma pushout_sigma_of_sigma_pushout
abstract begin
intro x, induction x with x y, induction y with b c a,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover, apply hdeg_square, esimp,
exact ap_compose sigma_pushout_of_pushout_sigma _ _ ⬝
ap02 _ (!elim_glue ⬝ !con_idp ⬝ !idp_con) ⬝ !elim_glue }
end end
abstract begin
intro x, induction x with b c a,
{ induction b, reflexivity },
{ induction c, reflexivity },
{ apply eq_pathover_id_right,
refine ap_compose pushout_sigma_of_sigma_pushout _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
induction a with a a',
apply hdeg_square, refine !ap_compose'⁻¹ ⬝ !elim_glue ⬝ !con_idp ⬝ !idp_con }
end end
variables {f g}
variables {X' : Type} {A' B' C' : X' → Type} {f' : Πx, A' x → B' x} {g' : Πx, A' x → C' x}
{s : X → X'} {h₁ : Πx, A x → A' (s x)} {h₂ : Πx, B x → B' (s x)} {h₃ : Πx, C x → C' (s x)}
(p : Πx, h₂ x ∘ f x ~ f' (s x) ∘ h₁ x) (q : Πx, h₃ x ∘ g x ~ g' (s x) ∘ h₁ x)
definition pushout_sigma_equiv_sigma_pushout_natural :
hsquare
(pushout.functor (sigma_functor s h₁) (sigma_functor s h₂) (sigma_functor s h₃)
(λa, sigma_eq_right (p a.1 a.2)) (λa, sigma_eq_right (q a.1 a.2)))
(sigma_functor s (λx, pushout.functor (h₁ x) (h₂ x) (h₃ x) (p x) (q x)))
(pushout_sigma_equiv_sigma_pushout f g) (pushout_sigma_equiv_sigma_pushout f' g') :=
begin
intro x, induction x with b c a,
{ reflexivity },
{ reflexivity },
{ exact abstract begin apply eq_pathover, apply hdeg_square,
refine !ap_compose ⬝ ap02 _ !elim_glue ⬝ !ap_con ⬝
(!ap_con ⬝ (!ap_compose'⁻¹ ⬝ !ap_compose'⁻¹) ◾ !elim_glue) ◾
(!ap_compose'⁻¹ ⬝ ap02 _ !ap_inv⁻¹ ⬝ !ap_compose'⁻¹) ⬝ _,
exact
(ap_compose (sigma_functor s (λ x, pushout.functor (h₁ x) (h₂ x) (h₃ x) (p x) (q x))) _ _ ⬝
ap02 _ !elim_glue ⬝ !ap_compose'⁻¹ ⬝ ap_compose (dpair _) _ _ ⬝ ap02 _ !elim_glue ⬝
!ap_con ⬝ (!ap_con ⬝ !ap_compose'⁻¹ ◾ idp) ◾ !ap_compose'⁻¹)⁻¹ end end }
end
/- an induction principle for the cofiber of f : A → B if A is a pushout where the second map has a section.
The Pgluer is modified to get the right coherence
See https://github.com/HoTT/HoTT-Agda/blob/master/theorems/homotopy/elims/CofPushoutSection.agda
-/
open sigma.ops
definition cofiber_pushout_helper' {A : Type} {B : A → Type} {a₀₀ a₀₂ a₂₀ a₂₂ : A} {p₀₁ : a₀₀ = a₀₂}
{p₁₀ : a₀₀ = a₂₀} {p₂₁ : a₂₀ = a₂₂} {p₁₂ : a₀₂ = a₂₂} {s : square p₀₁ p₂₁ p₁₀ p₁₂}
{b₀₀ : B a₀₀} {b₂₀ : B a₂₀} {b₀₂ : B a₀₂} {b₂₂ b₂₂' : B a₂₂} {q₁₀ : b₀₀ =[p₁₀] b₂₀}
{q₀₁ : b₀₀ =[p₀₁] b₀₂} {q₂₁ : b₂₀ =[p₂₁] b₂₂'} {q₁₂ : b₀₂ =[p₁₂] b₂₂} :
Σ(r : b₂₂' = b₂₂), squareover B s q₀₁ (r ▸ q₂₁) q₁₀ q₁₂ :=
begin
induction s,
induction q₀₁ using idp_rec_on,
induction q₂₁ using idp_rec_on,
induction q₁₀ using idp_rec_on,
induction q₁₂ using idp_rec_on,
exact ⟨idp, idso⟩
end
definition cofiber_pushout_helper {A B C D : Type} {f : A → B} {g : A → C} {h : pushout f g → D}
{P : cofiber h → Type} {Pcod : Πd, P (cofiber.cod h d)} {Pbase : P (cofiber.base h)}
(Pgluel : Π(b : B), Pcod (h (inl b)) =[cofiber.glue (inl b)] Pbase)
(Pgluer : Π(c : C), Pcod (h (inr c)) =[cofiber.glue (inr c)] Pbase)
(a : A) : Σ(p : Pbase = Pbase), squareover P (natural_square cofiber.glue (glue a))
(Pgluel (f a)) (p ▸ Pgluer (g a))
(pathover_ap P (λa, cofiber.cod h (h a)) (apd (λa, Pcod (h a)) (glue a)))
(pathover_ap P (λa, cofiber.base h) (apd (λa, Pbase) (glue a))) :=
!cofiber_pushout_helper'
definition cofiber_pushout_rec {A B C D : Type} {f : A → B} {g : A → C} {h : pushout f g → D}
{P : cofiber h → Type} (Pcod : Πd, P (cofiber.cod h d)) (Pbase : P (cofiber.base h))
(Pgluel : Π(b : B), Pcod (h (inl b)) =[cofiber.glue (inl b)] Pbase)
(Pgluer : Π(c : C), Pcod (h (inr c)) =[cofiber.glue (inr c)] Pbase)
(r : C → A) (p : Πa, r (g a) = a)
(x : cofiber h) : P x :=
begin
induction x with d x,
{ exact Pcod d },
{ exact Pbase },
{ induction x with b c a,
{ exact Pgluel b },
{ exact (cofiber_pushout_helper Pgluel Pgluer (r c)).1 ▸ Pgluer c },
{ apply pathover_pathover, rewrite [p a], exact (cofiber_pushout_helper Pgluel Pgluer a).2 }}
end
/- universal property of cofiber -/
definition cofiber_exact_1 {X Y Z : Type*} (f : X →* Y) (g : pcofiber f →* Z) :
(g ∘* pcod f) ∘* f ~* pconst X Z :=
!passoc ⬝* pwhisker_left _ !pcod_pcompose ⬝* !pcompose_pconst
protected definition pcofiber.elim [constructor] {X Y Z : Type*} {f : X →* Y} (g : Y →* Z)
(p : g ∘* f ~* pconst X Z) : pcofiber f →* Z :=
begin
fapply pmap.mk,
{ intro w, induction w with y x, exact g y, exact pt, exact p x },
{ reflexivity }
end
protected definition pcofiber.elim_pcod {X Y Z : Type*} {f : X →* Y} {g : Y →* Z}
(p : g ∘* f ~* pconst X Z) : pcofiber.elim g p ∘* pcod f ~* g :=
begin
fapply phomotopy.mk,
{ intro y, reflexivity },
{ esimp, refine !idp_con ⬝ _,
refine _ ⬝ (!ap_con ⬝ (!ap_compose'⁻¹ ⬝ !ap_inv) ◾ !elim_glue)⁻¹,
apply eq_inv_con_of_con_eq, exact (to_homotopy_pt p)⁻¹ }
end
/-
The maps Z^{C_f} --> Z^Y --> Z^X are exact at Z^Y.
Here Y^X means pointed maps from X to Y and C_f is the cofiber of f.
The maps are given by precomposing with (pcod f) and f.
-/
definition cofiber_exact {X Y Z : Type*} (f : X →* Y) :
is_exact_t (@ppcompose_right _ _ Z (pcod f)) (ppcompose_right f) :=
begin
constructor,
{ intro g, apply eq_of_phomotopy, apply cofiber_exact_1 },
{ intro g p, note q := phomotopy_of_eq p,
exact fiber.mk (pcofiber.elim g q) (eq_of_phomotopy (pcofiber.elim_pcod q)) }
end
/- cofiber of pcod is suspension -/
definition pcofiber_pcod {A B : Type*} (f : A →* B) : pcofiber (pcod f) ≃* susp A :=
begin
fapply pequiv_of_equiv,
{ refine !pushout.symm ⬝e _,
exact pushout_vcompose_equiv f equiv.rfl homotopy.rfl homotopy.rfl },
reflexivity
end
-- definition pushout_vcompose [constructor] {A B C D : Type} (f : A → B) (g : A → C) (h : B → D) :
-- pushout h (@inl _ _ _ f g) ≃ pushout (h ∘ f) g :=
-- definition pushout_hcompose {A B C D : Type} (f : A → B) (g : A → C) (h : C → D) :
-- pushout (@inr _ _ _ f g) h ≃ pushout f (h ∘ g) :=
-- definition pushout_vcompose_equiv {A B C D E : Type} (f : A → B) {g : A → C} {h : B → D}
-- {hf : A → D} {k : B → E} (e : E ≃ pushout f g) (p : k ~ e⁻¹ᵉ ∘ inl) (q : h ∘ f ~ hf) :
-- pushout h k ≃ pushout hf g :=
end pushout
namespace pushout
/- define the quotient using pushout -/
section
open quotient sigma.ops
variables {A B : Type} (R : A → A → Type) {Q : B → B → Type}
(f : A → B) (k : Πa a' : A, R a a' → Q (f a) (f a'))
definition pushout_quotient {A : Type} (R : A → A → Type) : Type :=
@pushout ((Σa a', R a a') ⊎ (Σa a', R a a')) A (Σa a', R a a')
(sum.rec pr1 (λx, x.2.1)) (sum.rec id id)
variable {R}
definition pushout_quotient_of_quotient [unfold 3] (x : quotient R) : pushout_quotient R :=
begin
induction x with a a a' r,
{ exact inl a },
{ exact glue (sum.inl ⟨a, a', r⟩) ⬝ (glue (sum.inr ⟨a, a', r⟩))⁻¹ }
end
definition quotient_of_pushout_quotient [unfold 3] (x : pushout_quotient R) : quotient R :=
begin
induction x with a x x,
{ exact class_of R a },
{ exact class_of R x.2.1 },
{ induction x with x x, exact eq_of_rel R x.2.2, reflexivity }
end
variable (R)
definition quotient_equiv_pushout [constructor] : quotient R ≃ pushout_quotient R :=
equiv.MK pushout_quotient_of_quotient quotient_of_pushout_quotient
abstract begin
intro x, induction x with a x x,
{ reflexivity },
{ exact glue (sum.inr x) },
{ apply eq_pathover_id_right,
refine ap_compose pushout_quotient_of_quotient _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
induction x with x x,
{ refine !elim_eq_of_rel ⬝ph _, induction x with a x, induction x with a' r,
exact whisker_bl _ hrfl },
{ exact square_of_eq idp }}
end end
abstract begin
intro x, induction x,
{ reflexivity },
{ apply eq_pathover_id_right, apply hdeg_square,
refine ap_compose quotient_of_pushout_quotient _ _ ⬝ ap02 _ !elim_eq_of_rel ⬝ _,
exact !ap_con ⬝ !elim_glue ◾ (!ap_inv ⬝ !elim_glue⁻²) }
end end
variable {R}
definition sigma_functor2 [unfold 7] : (Σ a a', R a a') → (Σ b b', Q b b') :=
sigma_functor f (λa, sigma_functor f (k a))
definition pushout_quotient_functor [unfold 7] : pushout_quotient R → pushout_quotient Q :=
let tf := sigma_functor2 f k in
pushout.functor (sum_functor tf tf) f tf
begin intro x, induction x: reflexivity end begin intro x, induction x: reflexivity end
definition quotient_equiv_pushout_natural :
hsquare (quotient.functor _ _ f k) (pushout_quotient_functor f k)
(quotient_equiv_pushout R) (quotient_equiv_pushout Q) :=
begin
intro x, induction x with a a a' r,
{ reflexivity },
{ apply eq_pathover, apply hdeg_square,
refine ap_compose pushout_quotient_of_quotient _ _ ⬝ _ ⬝
(ap_compose (pushout.functor _ _ _ _ _) _ _)⁻¹,
refine ap02 _ !elim_eq_of_rel ⬝ _ ⬝ (ap02 _ !elim_eq_of_rel)⁻¹,
refine !elim_eq_of_rel ⬝ _,
exact (!ap_con ⬝ (!pushout.elim_glue ⬝ !con_idp ⬝ !idp_con) ◾
(!ap_inv ⬝ (!pushout.elim_glue ⬝ !con_idp ⬝ !idp_con)⁻²))⁻¹ }
end
end
variables {A B : Type*}
open smash
definition prod_of_wedge [unfold 3] (v : wedge A B) : A × B :=
begin
induction v with a b ,
{ exact (a, pt) },
{ exact (pt, b) },
{ reflexivity }
end
definition wedge_of_sum [unfold 3] (v : A + B) : wedge A B :=
begin
induction v with a b,
{ exact pushout.inl a },
{ exact pushout.inr b }
end
definition prod_of_wedge_of_sum [unfold 3] (v : A + B) :
prod_of_wedge (wedge_of_sum v) = prod_of_sum v :=
begin
induction v with a b,
{ reflexivity },
{ reflexivity }
end
definition eq_inl_pushout_wedge_of_sum [unfold 3] (v : wedge A B) :
inl pt = inl v :> pushout wedge_of_sum bool_of_sum :=
begin
induction v with a b,
{ exact glue (sum.inl pt) ⬝ (glue (sum.inl a))⁻¹, },
{ exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) ⬝ (glue (sum.inr b))⁻¹, },
{ apply eq_pathover_constant_left,
refine !con.right_inv ⬝pv _ ⬝vp !con_inv_cancel_right⁻¹, exact square_of_eq idp }
end
variables (A B)
definition eq_inr_pushout_wedge_of_sum [unfold 3] (b : bool) :
inl pt = inr b :> pushout (@wedge_of_sum A B) bool_of_sum :=
begin
induction b,
{ exact glue (sum.inl pt) },
{ exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) }
end
definition is_contr_pushout_wedge_of_sum : is_contr (pushout (@wedge_of_sum A B) bool_of_sum) :=
begin
apply is_contr.mk (pushout.inl pt),
intro x, induction x with v b w,
{ apply eq_inl_pushout_wedge_of_sum },
{ apply eq_inr_pushout_wedge_of_sum },
{ apply eq_pathover_constant_left_id_right,
induction w with a b,
{ apply whisker_rt, exact vrfl },
{ apply whisker_rt, exact vrfl }}
end
definition bool_of_sum_of_bool {A B : Type*} (b : bool) : bool_of_sum (sum_of_bool A B b) = b :=
by induction b: reflexivity
/- a different proof, using pushout lemmas, and the fact that the wedge is the pushout of
A + B <-- 2 --> 1 -/
definition pushout_wedge_of_sum_equiv_unit : pushout (@wedge_of_sum A B) bool_of_sum ≃ unit :=
begin
refine pushout_hcompose_equiv (sum_of_bool A B) (wedge_equiv_pushout_sum A B ⬝e !pushout.symm)
_ _ ⬝e _,
exact erfl,
intro x, induction x,
reflexivity, reflexivity,
exact bool_of_sum_of_bool,
apply pushout_of_equiv_right
end
end pushout
namespace pushout -- should this be wedge?
/- the wedge connectivity lemma actually works as intended -/
section
open trunc_index is_conn prod prod.ops
-- of course, the tricky part is coming up with the statement;
-- the proof is easy!
private definition tricky_lemma {A B : Type} (f : A → B) {a a' : A}
(p : a = a') (P : B → Type) {r : f a = f a'} (α : ap f p = r)
(s : Π x, P (f x)) (e : Π y, P y)
(q : e (f a) = s a) (q' : e (f a') = s a')
(H : (ap (transport P r) q)⁻¹ ⬝ (apdt e r ⬝ q')
= (tr_compose P f p (s a) ⬝ ap (λ u, transport P u (s a)) α)⁻¹ ⬝ apdt s p)
: q =[p] q' :=
begin
induction α, induction p, apply pathover_idp_of_eq, esimp, esimp at H,
rewrite ap_id at H, rewrite idp_con at H,
exact (eq_con_of_inv_con_eq H)⁻¹,
end
parameters {A B : Type*}
private definition section_of_glue (P : A × B → Type)
(s : Π w, P (prod_of_wedge w))
: (s (inl pt) = s (inr pt) :> P (pt, pt)) :=
((tr_compose P prod_of_wedge (glue star) (s (inl pt)))
⬝ (ap (λ q, transport P q (s (inl pt)))
(wedge.elim_glue (λ a, (a, pt)) (λ b, (pt, b)) idp)))⁻¹ ⬝ (apdt s (glue star))
parameters (n m : ) [cA : is_conn n A] [cB : is_conn m B]
include cA cB
definition is_conn_fun_prod_of_wedge : is_conn_fun (m + n) (@prod_of_wedge A B) :=
begin
apply is_conn.is_conn_fun.intro, intro P, fapply is_retraction.mk,
{ intros s z, induction z with a b,
exact @wedge_extension.ext A B n m cA cB (λ a b, P (a, b))
(λ a b, transport (λ k, is_trunc k (P (a, b))) (of_nat_add_of_nat m n)
(trunctype.struct (P (a, b))))
(λ a, s (inl a)) (λ b, s (inr b))
(section_of_glue P s) a b },
{ intro s, apply eq_of_homotopy, intro w, induction w with a b,
{ esimp, apply wedge_extension.β_left },
{ esimp, apply wedge_extension.β_right },
{ esimp, apply @tricky_lemma (wedge A B) (A × B)
(@prod_of_wedge A B) (inl pt) (inr pt) wedge.glue P idp
(wedge.elim_glue (λ a, (a, pt)) (λ b, (pt, b)) idp) s
(prod.rec (@wedge_extension.ext A B n m cA cB (λ a b, P (a, b))
(λ a b, transport (λ k, is_trunc k (P (a, b))) (of_nat_add_of_nat m n)
(trunctype.struct (P (a, b))))
(λ a, s (inl a)) (λ b, s (inr b)) (section_of_glue P s))),
esimp, rewrite [ap_id,idp_con], apply wedge_extension.coh } }
end
end
end pushout
namespace pushout
/- alternative version of the flattening lemma -/
-- should be moved to main library
section
open sigma sigma.ops
universe variables u₁ u₂ u₃ u₄
parameters {TL : Type.{u₁}} {BL : Type.{u₂}} {TR : Type.{u₃}}
(f : TL → BL) (g : TL → TR) (P : pushout f g → Type.{u₄})
local abbreviation F : sigma (λ x, P (inl (f x))) → sigma (P ∘ inl) :=
λ z, ⟨ f z.1 , z.2 ⟩
local abbreviation G : sigma (λ x, P (inl (f x))) → sigma (P ∘ inr) :=
λ z, ⟨ g z.1 , transport P (glue z.1) z.2 ⟩
local abbreviation Pglue : Π x, P (inl (f x)) ≃ P (inr (g x)) :=
λ x, equiv.mk (transport P (glue x)) (is_equiv_tr P (glue x))
protected definition flattening' : sigma P ≃ pushout F G :=
begin
assert H : Π w, P w ≃ pushout.elim_type (P ∘ inl) (P ∘ inr) Pglue w,
{ intro w, induction w with x x x,
{ exact erfl }, { exact erfl },
{ apply equiv_pathover, intro pfx pgx q,
apply pathover_of_tr_eq,
apply eq.trans (ap10 (elim_type_glue.{u₁ u₂ u₃ u₄}
(P ∘ inl) (P ∘ inr) Pglue x) pfx), -- why do we need explicit universes here?
exact tr_eq_of_pathover q } },
apply equiv.trans (sigma_equiv_sigma_right H),
exact pushout.flattening f g (P ∘ inl) (P ∘ inr) Pglue
end
end
end pushout