573 lines
21 KiB
Text
573 lines
21 KiB
Text
/-
|
||
Copyright (c) 2015 Egbert Rijke. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn, Egbert Rijke, Jeremy Avigad
|
||
|
||
Basic concepts of group theory
|
||
-/
|
||
import algebra.group_theory ..move_to_lib ..property
|
||
|
||
open eq algebra is_trunc sigma sigma.ops prod trunc property
|
||
|
||
namespace group
|
||
|
||
/- #Subgroups -/
|
||
/-- Recall that a subtype of a type A is the same thing as a family
|
||
of mere propositions over A. Thus, we define a subgroup of a
|
||
group G to be a family of mere propositions over (the underlying
|
||
type of) G, closed under the constants and operations --/
|
||
|
||
structure is_subgroup [class] (G : Group) (H : property G) : Type :=
|
||
(one_mem : 1 ∈ H)
|
||
(mul_mem : Π{g h}, g ∈ H → h ∈ H → g * h ∈ H)
|
||
(inv_mem : Π{g}, g ∈ H → g⁻¹ ∈ H)
|
||
|
||
definition is_prop_is_subgroup [instance] (G : Group) (H : property G) : is_prop (is_subgroup G H) :=
|
||
proof -- this results in a simpler choice of universe metavariables
|
||
have 1 ∈ H × (Π{g h}, g ∈ H → h ∈ H → g * h ∈ H) × (Π{g}, g ∈ H → g⁻¹ ∈ H) ≃ is_subgroup G H,
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro p, cases p with p1 p2, cases p2 with p2 p3, exact is_subgroup.mk p1 @p2 @p3 },
|
||
{ intro p, split, exact is_subgroup.one_mem H, split, apply @is_subgroup.mul_mem G H p, apply @is_subgroup.inv_mem G H p},
|
||
{ intro b, cases b, reflexivity },
|
||
{ intro a, cases a with a1 a2, cases a2, reflexivity }
|
||
end,
|
||
is_trunc_equiv_closed _ this _
|
||
qed
|
||
|
||
/-- Every group G has at least two subgroups, the trivial subgroup containing only one, and the full subgroup. --/
|
||
definition trivial_subgroup [instance] (G : Group) : is_subgroup G '{1} :=
|
||
begin
|
||
fapply is_subgroup.mk,
|
||
{ esimp, apply mem_insert },
|
||
{ intros g h p q, esimp at *, apply mem_singleton_of_eq, rewrite [eq_of_mem_singleton p, eq_of_mem_singleton q, mul_one]},
|
||
{ intros g p, esimp at *, apply mem_singleton_of_eq, rewrite [eq_of_mem_singleton p, one_inv] }
|
||
end
|
||
|
||
definition full_subgroup [instance] (G : Group) : is_subgroup G univ :=
|
||
begin
|
||
fapply is_subgroup.mk,
|
||
{ apply logic.trivial },
|
||
{ intros, apply logic.trivial },
|
||
{ intros, apply logic.trivial }
|
||
end
|
||
|
||
/-- Every group homomorphism f : G -> H determines a subgroup of H,
|
||
the image of f, and a subgroup of G, the kernel of f. In the
|
||
following definition we define the image of f. Since a subgroup
|
||
is required to be closed under the group operations, showing
|
||
that the image of f is closed under the group operations is part
|
||
of the definition of the image of f. --/
|
||
|
||
definition is_subgroup_image [instance] {G : Group} {H : Group} (f : G →g H) :
|
||
is_subgroup H (image f) :=
|
||
begin
|
||
fapply is_subgroup.mk,
|
||
-- subproperty contains 1
|
||
{ fapply image.mk, exact 1, apply respect_one},
|
||
-- subproperty is closed under multiplication
|
||
{ intro h h', intro u v,
|
||
induction u with x p, induction v with y q,
|
||
induction p, induction q,
|
||
apply image.mk (x * y), apply respect_mul},
|
||
-- subproperty is closed under inverses
|
||
{ intro g, intro t, induction t with x p, induction p,
|
||
apply image.mk x⁻¹, apply respect_inv }
|
||
end
|
||
|
||
section kernels
|
||
|
||
variables {G₁ G₂ : Group}
|
||
|
||
-- TODO: maybe define this in more generality for pointed sets?
|
||
definition kernel [constructor] (φ : G₁ →g G₂) : property G₁ := { g | trunctype.mk (φ g = 1) _}
|
||
|
||
theorem mul_mem_kernel (φ : G₁ →g G₂) (g h : G₁) (H₁ : g ∈ kernel φ) (H₂ : h ∈ kernel φ) : g * h ∈ kernel φ :=
|
||
calc
|
||
φ (g * h) = (φ g) * (φ h) : to_respect_mul
|
||
... = 1 * (φ h) : H₁
|
||
... = 1 * 1 : H₂
|
||
... = 1 : one_mul
|
||
|
||
theorem inv_mem_kernel (φ : G₁ →g G₂) (g : G₁) (H : g ∈ kernel φ) : g⁻¹ ∈ kernel φ :=
|
||
calc
|
||
φ g⁻¹ = (φ g)⁻¹ : to_respect_inv
|
||
... = 1⁻¹ : H
|
||
... = 1 : one_inv
|
||
|
||
definition is_subgroup_kernel [constructor] [instance] (φ : G₁ →g G₂) : is_subgroup G₁ (kernel φ) :=
|
||
⦃ is_subgroup,
|
||
one_mem := respect_one φ,
|
||
mul_mem := mul_mem_kernel φ,
|
||
inv_mem := inv_mem_kernel φ
|
||
⦄
|
||
|
||
end kernels
|
||
|
||
/-- Now we should be able to show that if f is a homomorphism for which the kernel is trivial and the
|
||
image is full, then f is an isomorphism, except that no one defined the proposition that f is an
|
||
isomorphism :/ --/
|
||
/- definition is_iso_from_kertriv_imfull {G H : Group} (f : G →g H) :
|
||
is_trivial_subgroup G (kernel f) → is_full_subgroup H (image_subgroup f) → unit
|
||
/- replace unit by is_isomorphism f -/ := sorry -/
|
||
|
||
/- #Normal subgroups -/
|
||
|
||
/-- Next, we formalize some aspects of normal subgroups. Recall that a normal subgroup H of a
|
||
group G is a subgroup which is invariant under all inner automorophisms on G. --/
|
||
|
||
definition is_normal.{u v} [constructor] (G : Group) (N : property.{u v} G) : Prop :=
|
||
trunctype.mk (Π{g} h, g ∈ N → h * g * h⁻¹ ∈ N) _
|
||
|
||
structure is_normal_subgroup [class] (G : Group) (N : property G) extends is_subgroup G N :=
|
||
(is_normal : is_normal G N)
|
||
|
||
abbreviation subgroup_one_mem [unfold 2] := @is_subgroup.one_mem
|
||
abbreviation subgroup_mul_mem [unfold 2] := @is_subgroup.mul_mem
|
||
abbreviation subgroup_inv_mem [unfold 2] := @is_subgroup.inv_mem
|
||
abbreviation subgroup_is_normal [unfold 2] := @is_normal_subgroup.is_normal
|
||
|
||
section
|
||
variables {G G' G₁ G₂ G₃ : Group} {H N : property G} [is_subgroup G H]
|
||
[is_normal_subgroup G N] {g g' h h' k : G}
|
||
{A B : AbGroup}
|
||
|
||
theorem is_normal_subgroup' (h : G) (r : g ∈ N) : h⁻¹ * g * h ∈ N :=
|
||
inv_inv h ▸ subgroup_is_normal N h⁻¹ r
|
||
|
||
definition is_normal_subgroup_ab [constructor] {C : property A} (subgrpA : is_subgroup A C)
|
||
: is_normal_subgroup A C :=
|
||
⦃ is_normal_subgroup, subgrpA,
|
||
is_normal := abstract begin
|
||
intros g h r, xrewrite [mul.comm h g, mul_inv_cancel_right], exact r
|
||
end end⦄
|
||
|
||
theorem is_normal_subgroup_rev (h : G) (r : h * g * h⁻¹ ∈ N) : g ∈ N :=
|
||
have H : h⁻¹ * (h * g * h⁻¹) * h = g, from calc
|
||
h⁻¹ * (h * g * h⁻¹) * h = h⁻¹ * (h * g) * h⁻¹ * h : by rewrite [-mul.assoc h⁻¹]
|
||
... = h⁻¹ * (h * g) : by rewrite [inv_mul_cancel_right]
|
||
... = g : inv_mul_cancel_left,
|
||
H ▸ is_normal_subgroup' h r
|
||
|
||
theorem is_normal_subgroup_rev' (h : G) (r : h⁻¹ * g * h ∈ N) : g ∈ N :=
|
||
is_normal_subgroup_rev h⁻¹ ((inv_inv h)⁻¹ ▸ r)
|
||
|
||
theorem normal_subgroup_insert (r : k ∈ N) (r' : g * h ∈ N) : g * (k * h) ∈ N :=
|
||
have H1 : (g * h) * (h⁻¹ * k * h) ∈ N, from
|
||
subgroup_mul_mem r' (is_normal_subgroup' h r),
|
||
have H2 : (g * h) * (h⁻¹ * k * h) = g * (k * h), from calc
|
||
(g * h) * (h⁻¹ * k * h) = g * (h * (h⁻¹ * k * h)) : mul.assoc
|
||
... = g * (h * (h⁻¹ * (k * h))) : by rewrite [mul.assoc h⁻¹]
|
||
... = g * (k * h) : by rewrite [mul_inv_cancel_left],
|
||
show N (g * (k * h)), from H2 ▸ H1
|
||
|
||
/-- In the following, we show that the kernel of any group homomorphism f : G₁ →g G₂ is a normal subgroup of G₁ --/
|
||
theorem is_normal_subgroup_kernel {G₁ G₂ : Group} (φ : G₁ →g G₂) (g : G₁) (h : G₁)
|
||
: g ∈ kernel φ → h * g * h⁻¹ ∈ kernel φ :=
|
||
begin
|
||
esimp at *,
|
||
intro p,
|
||
exact calc
|
||
φ (h * g * h⁻¹) = (φ (h * g)) * φ (h⁻¹) : to_respect_mul
|
||
... = (φ h) * (φ g) * (φ h⁻¹) : to_respect_mul
|
||
... = (φ h) * 1 * (φ h⁻¹) : p
|
||
... = (φ h) * (φ h⁻¹) : mul_one
|
||
... = (φ h) * (φ h)⁻¹ : to_respect_inv
|
||
... = 1 : mul.right_inv
|
||
end
|
||
|
||
-- this is just (Σ(g : G), H g), but only defined if (H g) is a prop
|
||
definition sg {G : Group} (H : property G) : Type := subtype (λ x, x ∈ H)
|
||
local attribute sg [reducible]
|
||
|
||
definition subgroup_one [constructor] : sg H := ⟨one, subgroup_one_mem H⟩
|
||
definition subgroup_inv [unfold 3] : sg H → sg H :=
|
||
λv, ⟨v.1⁻¹, subgroup_inv_mem v.2⟩
|
||
definition subgroup_mul [unfold 3 4] : sg H → sg H → sg H :=
|
||
λv w, ⟨v.1 * w.1, subgroup_mul_mem v.2 w.2⟩
|
||
|
||
definition subgroup_elt (x : sg H) : G := x.1
|
||
|
||
section
|
||
local notation 1 := subgroup_one
|
||
local postfix ⁻¹ := subgroup_inv
|
||
local infix * := subgroup_mul
|
||
|
||
theorem subgroup_mul_assoc (g₁ g₂ g₃ : sg H) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
|
||
subtype_eq !mul.assoc
|
||
|
||
theorem subgroup_one_mul (g : sg H) : 1 * g = g :=
|
||
subtype_eq !one_mul
|
||
|
||
theorem subgroup_mul_one (g : sg H) : g * 1 = g :=
|
||
subtype_eq !mul_one
|
||
|
||
theorem subgroup_mul_left_inv (g : sg H) : g⁻¹ * g = 1 :=
|
||
subtype_eq !mul.left_inv
|
||
|
||
theorem subgroup_mul_comm {G : AbGroup} {H : property G} [subgrpH : is_subgroup G H] (g h : sg H)
|
||
: subgroup_mul g h = subgroup_mul h g :=
|
||
subtype_eq !mul.comm
|
||
|
||
end
|
||
|
||
variable (H)
|
||
|
||
definition group_sg [constructor] : group (sg H) :=
|
||
group.mk _ subgroup_mul subgroup_mul_assoc subgroup_one subgroup_one_mul subgroup_mul_one
|
||
subgroup_inv subgroup_mul_left_inv
|
||
|
||
definition subgroup [constructor] : Group :=
|
||
Group.mk _ (group_sg H)
|
||
|
||
variable {H}
|
||
|
||
definition ab_group_sg [constructor] {G : AbGroup} (H : property G) [is_subgroup G H]
|
||
: ab_group (sg H) :=
|
||
⦃ab_group, (group_sg H), mul_comm := subgroup_mul_comm⦄
|
||
|
||
definition ab_subgroup [constructor] {G : AbGroup} (H : property G) [is_subgroup G H]
|
||
: AbGroup :=
|
||
AbGroup.mk _ (ab_group_sg H)
|
||
|
||
definition Kernel {G H : Group} (f : G →g H) : Group := subgroup (kernel f)
|
||
|
||
definition ab_Kernel {G H : AbGroup} (f : G →g H) : AbGroup := ab_subgroup (kernel f)
|
||
|
||
definition incl_of_subgroup [constructor] {G : Group} (H : property G) [is_subgroup G H] :
|
||
subgroup H →g G :=
|
||
begin
|
||
fapply homomorphism.mk,
|
||
-- the underlying function
|
||
{ intro h, induction h with g, exact g},
|
||
-- is a homomorphism
|
||
intro g h, reflexivity
|
||
end
|
||
|
||
definition is_embedding_incl_of_subgroup {G : Group} (H : property G) [is_subgroup G H] :
|
||
is_embedding (incl_of_subgroup H) :=
|
||
begin
|
||
fapply function.is_embedding_of_is_injective,
|
||
intro h h',
|
||
fapply subtype_eq
|
||
end
|
||
|
||
definition ab_Kernel_incl {G H : AbGroup} (f : G →g H) : ab_Kernel f →g G :=
|
||
begin
|
||
fapply incl_of_subgroup,
|
||
end
|
||
|
||
definition is_embedding_ab_kernel_incl {G H : AbGroup} (f : G →g H) : is_embedding (ab_Kernel_incl f) :=
|
||
begin
|
||
fapply is_embedding_incl_of_subgroup,
|
||
end
|
||
|
||
definition is_subgroup_of_is_subgroup {G : Group} {H1 H2 : property G} [is_subgroup G H1]
|
||
[is_subgroup G H2] (hyp : Π (g : G), g ∈ H1 → g ∈ H2) :
|
||
is_subgroup (subgroup H2) {h | incl_of_subgroup H2 h ∈ H1} :=
|
||
is_subgroup.mk
|
||
(subgroup_one_mem H1)
|
||
(begin
|
||
intros g h p q,
|
||
apply mem_property_of,
|
||
apply subgroup_mul_mem (of_mem_property_of p) (of_mem_property_of q),
|
||
end)
|
||
(begin
|
||
intros h p,
|
||
apply mem_property_of,
|
||
apply subgroup_inv_mem (of_mem_property_of p)
|
||
end)
|
||
|
||
definition Image {G H : Group} (f : G →g H) : Group :=
|
||
subgroup (image f)
|
||
|
||
definition ab_Image {G : AbGroup} {H : Group} (f : G →g H) : AbGroup :=
|
||
AbGroup_of_Group (Image f)
|
||
begin
|
||
intro g h,
|
||
induction g with x t, induction h with y s,
|
||
fapply subtype_eq,
|
||
induction t with g p, induction s with h q, induction p, induction q,
|
||
refine (((respect_mul f g h)⁻¹ ⬝ _) ⬝ (respect_mul f h g)),
|
||
apply (ap f),
|
||
induction G, induction struct', apply mul_comm
|
||
end
|
||
|
||
definition image_incl {G H : Group} (f : G →g H) : Image f →g H :=
|
||
incl_of_subgroup (image f)
|
||
|
||
definition ab_Image_incl {A B : AbGroup} (f : A →g B) : ab_Image f →g B := incl_of_subgroup (image f)
|
||
|
||
definition is_equiv_surjection_ab_image_incl {A B : AbGroup} (f : A →g B) (H : is_surjective f) : is_equiv (ab_Image_incl f ) :=
|
||
begin
|
||
fapply is_equiv.adjointify (ab_Image_incl f),
|
||
intro b,
|
||
fapply sigma.mk,
|
||
exact b,
|
||
exact H b,
|
||
intro b,
|
||
reflexivity,
|
||
intro x,
|
||
apply subtype_eq,
|
||
reflexivity
|
||
end
|
||
|
||
definition iso_surjection_ab_image_incl [constructor] {A B : AbGroup} (f : A →g B) (H : is_surjective f) : ab_Image f ≃g B :=
|
||
begin
|
||
fapply isomorphism.mk,
|
||
exact (ab_Image_incl f),
|
||
exact is_equiv_surjection_ab_image_incl f H
|
||
end
|
||
|
||
definition hom_lift [constructor] {G H : Group} (f : G →g H) (K : property H) [is_subgroup H K] (Hyp : Π (g : G), K (f g)) : G →g subgroup K :=
|
||
begin
|
||
fapply homomorphism.mk,
|
||
intro g,
|
||
fapply sigma.mk,
|
||
exact f g,
|
||
fapply Hyp,
|
||
intro g h, apply subtype_eq, esimp, apply respect_mul
|
||
end
|
||
|
||
definition hom_factors_through_lift {G H : Group} (f : G →g H) (K : property H) [is_subgroup H K] (Hyp : Π (g : G), K (f g)) :
|
||
f = incl_of_subgroup K ∘g hom_lift f K Hyp :=
|
||
begin
|
||
fapply homomorphism_eq,
|
||
reflexivity
|
||
end
|
||
|
||
definition ab_hom_lift [constructor] {G H : AbGroup} (f : G →g H) (K : property H) [is_subgroup H K] (Hyp : Π (g : G), K (f g)) : G →g ab_subgroup K :=
|
||
begin
|
||
fapply homomorphism.mk,
|
||
intro g,
|
||
fapply sigma.mk,
|
||
exact f g,
|
||
fapply Hyp,
|
||
intro g h, apply subtype_eq, apply respect_mul,
|
||
end
|
||
|
||
definition ab_hom_factors_through_lift {G H : AbGroup} (f : G →g H) (K : property H) [is_subgroup H K] (Hyp : Π (g : G), K (f g)) :
|
||
f = incl_of_subgroup K ∘g hom_lift f K Hyp :=
|
||
begin
|
||
fapply homomorphism_eq,
|
||
reflexivity
|
||
end
|
||
|
||
definition ab_hom_lift_kernel [constructor] {A B C : AbGroup} (f : A →g B) (g : B →g C) (Hyp : Π (a : A), g (f a) = 1) : A →g ab_Kernel g :=
|
||
begin
|
||
fapply ab_hom_lift,
|
||
exact f,
|
||
intro a,
|
||
exact Hyp a,
|
||
end
|
||
|
||
definition ab_hom_lift_kernel_factors {A B C : AbGroup} (f : A →g B) (g : B →g C) (Hyp : Π (a : A), g (f a) = 1) :
|
||
f = ab_Kernel_incl g ∘g ab_hom_lift_kernel f g Hyp :=
|
||
begin
|
||
fapply ab_hom_factors_through_lift,
|
||
end
|
||
|
||
definition image_lift [constructor] {G H : Group} (f : G →g H) : G →g Image f :=
|
||
begin
|
||
fapply hom_lift f,
|
||
intro g,
|
||
apply tr,
|
||
fapply fiber.mk,
|
||
exact g, reflexivity
|
||
end
|
||
|
||
definition ab_image_lift [constructor] {G H : AbGroup} (f : G →g H) : G →g Image f :=
|
||
begin
|
||
fapply hom_lift f,
|
||
intro g,
|
||
apply tr,
|
||
fapply fiber.mk,
|
||
exact g, reflexivity
|
||
end
|
||
|
||
definition is_surjective_image_lift {G H : Group} (f : G →g H) : is_surjective (image_lift f) :=
|
||
begin
|
||
intro h,
|
||
induction h with h p, induction p with g,
|
||
fapply image.mk,
|
||
exact g, induction p, reflexivity
|
||
end
|
||
|
||
definition image_factor {G H : Group} (f : G →g H) : f = (image_incl f) ∘g (image_lift f) :=
|
||
begin
|
||
fapply homomorphism_eq,
|
||
reflexivity
|
||
end
|
||
|
||
definition image_incl_injective {G H : Group} (f : G →g H) : Π (x y : Image f),
|
||
(image_incl f x = image_incl f y) → (x = y) :=
|
||
begin
|
||
intro x y,
|
||
intro p,
|
||
fapply subtype_eq,
|
||
exact p
|
||
end
|
||
|
||
definition image_incl_eq_one {G H : Group} (f : G →g H) :
|
||
Π (x : Image f), (image_incl f x = 1) → x = 1 :=
|
||
begin
|
||
intro x,
|
||
fapply image_incl_injective f x 1,
|
||
end
|
||
|
||
definition image_elim_lemma {f₁ : G₁ →g G₂} {f₂ : G₁ →g G₃} (h : Π⦃g⦄, f₁ g = 1 → f₂ g = 1)
|
||
(g g' : G₁) (p : f₁ g = f₁ g') : f₂ g = f₂ g' :=
|
||
have f₁ (g * g'⁻¹) = 1, from !to_respect_mul ⬝ ap (mul _) !to_respect_inv ⬝
|
||
mul_inv_eq_of_eq_mul (p ⬝ !one_mul⁻¹),
|
||
have f₂ (g * g'⁻¹) = 1, from h this,
|
||
eq_of_mul_inv_eq_one (ap (mul _) !to_respect_inv⁻¹ ⬝ !to_respect_mul⁻¹ ⬝ this)
|
||
|
||
open image
|
||
definition image_elim {f₁ : G₁ →g G₂} (f₂ : G₁ →g G₃) (h : Π⦃g⦄, f₁ g = 1 → f₂ g = 1) :
|
||
Image f₁ →g G₃ :=
|
||
homomorphism.mk (total_image.elim_set f₂ (image_elim_lemma h))
|
||
begin
|
||
refine total_image.rec _, intro g,
|
||
refine total_image.rec _, intro g',
|
||
exact to_respect_mul f₂ g g'
|
||
end
|
||
end
|
||
|
||
definition image_homomorphism {A B C : AbGroup} (f : A →g B) (g : B →g C) :
|
||
ab_Image f →g ab_Image (g ∘g f) :=
|
||
begin
|
||
fapply image_elim,
|
||
exact image_lift (g ∘g f),
|
||
intro a p,
|
||
fapply subtype_eq, unfold image_lift,
|
||
exact calc
|
||
g (f a) = g 1 : by exact ap g p
|
||
... = 1 : to_respect_one,
|
||
end
|
||
|
||
definition image_homomorphism_square {A B C : AbGroup} (f : A →g B) (g : B →g C) :
|
||
g ∘g image_incl f ~ image_incl (g ∘g f ) ∘g image_homomorphism f g :=
|
||
begin
|
||
intro x, induction x with b p, induction p with x, induction p, reflexivity
|
||
end
|
||
|
||
variables {G H K : Group} {R : property G} [is_subgroup G R]
|
||
{S : property H} [is_subgroup H S] {T : property K} [is_subgroup K T]
|
||
open function
|
||
|
||
definition subgroup_functor_fun [unfold 7] (φ : G →g H) (h : Πg, g ∈ R → φ g ∈ S)
|
||
(x : subgroup R) :
|
||
subgroup S :=
|
||
begin
|
||
induction x with g hg,
|
||
exact ⟨φ g, h g hg⟩
|
||
end
|
||
|
||
definition subgroup_functor [constructor] (φ : G →g H)
|
||
(h : Πg, g ∈ R → φ g ∈ S) : subgroup R →g subgroup S :=
|
||
begin
|
||
fapply homomorphism.mk,
|
||
{ exact subgroup_functor_fun φ h },
|
||
{ intro x₁ x₂, induction x₁ with g₁ hg₁, induction x₂ with g₂ hg₂,
|
||
exact sigma_eq !to_respect_mul !is_prop.elimo }
|
||
end
|
||
|
||
definition ab_subgroup_functor [constructor] {G H : AbGroup}
|
||
{R : property G} [is_subgroup G R]
|
||
{S : property H} [is_subgroup H S]
|
||
(φ : G →g H)
|
||
(h : Πg, g ∈ R → φ g ∈ S) : ab_subgroup R →g ab_subgroup S :=
|
||
subgroup_functor φ h
|
||
|
||
theorem subgroup_functor_compose (ψ : H →g K) (φ : G →g H)
|
||
(hψ : Πg, g ∈ S → ψ g ∈ T) (hφ : Πg, g ∈ R → φ g ∈ S) :
|
||
subgroup_functor ψ hψ ∘g subgroup_functor φ hφ ~
|
||
subgroup_functor (ψ ∘g φ) (λg, proof hψ (φ g) qed ∘ hφ g) :=
|
||
begin
|
||
intro g, induction g with g hg, reflexivity
|
||
end
|
||
|
||
definition subgroup_functor_gid : subgroup_functor (gid G) (λg, id) ~ gid (subgroup R) :=
|
||
begin
|
||
intro g, induction g with g hg, reflexivity
|
||
end
|
||
|
||
definition subgroup_functor_mul {G H : AbGroup} {R : property G} [subgroupR : is_subgroup G R]
|
||
{S : property H} [subgroupS : is_subgroup H S]
|
||
(ψ φ : G →g H) (hψ : Πg, g ∈ R → ψ g ∈ S) (hφ : Πg, g ∈ R → φ g ∈ S) :
|
||
homomorphism_mul (ab_subgroup_functor ψ hψ) (ab_subgroup_functor φ hφ) ~
|
||
ab_subgroup_functor (homomorphism_mul ψ φ)
|
||
(λg hg, subgroup_mul_mem (hψ g hg) (hφ g hg)) :=
|
||
begin
|
||
intro g, induction g with g hg, reflexivity
|
||
end
|
||
|
||
definition subgroup_functor_homotopy {ψ φ : G →g H} (hψ : Πg, R g → S (ψ g))
|
||
(hφ : Πg, g ∈ R → φ g ∈ S) (p : φ ~ ψ) :
|
||
subgroup_functor φ hφ ~ subgroup_functor ψ hψ :=
|
||
begin
|
||
intro g, induction g with g hg,
|
||
exact subtype_eq (p g)
|
||
end
|
||
|
||
definition subgroup_of_subgroup_incl {R S : property G} [is_subgroup G R] [is_subgroup G S]
|
||
(H : Π (g : G), g ∈ R → g ∈ S) : subgroup R →g subgroup S
|
||
:=
|
||
subgroup_functor (gid G) H
|
||
|
||
definition is_embedding_subgroup_of_subgroup_incl {R S : property G} [is_subgroup G R] [is_subgroup G S]
|
||
(H : Π (g : G), g ∈ R -> g ∈ S) : is_embedding (subgroup_of_subgroup_incl H) :=
|
||
begin
|
||
fapply is_embedding_of_is_injective,
|
||
intro x y p,
|
||
induction x with x r, induction y with y s,
|
||
fapply subtype_eq, esimp,
|
||
unfold subgroup_of_subgroup_incl at p, exact ap pr1 p,
|
||
end
|
||
|
||
definition ab_subgroup_of_subgroup_incl {A : AbGroup} {R S : property A} [is_subgroup A R] [is_subgroup A S]
|
||
(H : Π (a : A), a ∈ R → a ∈ S) : ab_subgroup R →g ab_subgroup S
|
||
:=
|
||
ab_subgroup_functor (gid A) H
|
||
|
||
definition is_embedding_ab_subgroup_of_subgroup_incl {A : AbGroup} {R S : property A} [is_subgroup A R] [is_subgroup A S]
|
||
(H : Π (a : A), a ∈ R → a ∈ S) : is_embedding (ab_subgroup_of_subgroup_incl H) :=
|
||
begin
|
||
fapply is_embedding_subgroup_of_subgroup_incl
|
||
end
|
||
|
||
definition ab_subgroup_iso {A : AbGroup} {R S : property A} [is_subgroup A R] [is_subgroup A S]
|
||
(H : Π (a : A), a ∈ R → a ∈ S) (K : Π (a : A), a ∈ S → a ∈ R) :
|
||
ab_subgroup R ≃g ab_subgroup S :=
|
||
begin
|
||
fapply isomorphism.mk,
|
||
exact subgroup_of_subgroup_incl H,
|
||
fapply is_equiv.adjointify,
|
||
exact subgroup_of_subgroup_incl K,
|
||
intro s, induction s with a p, fapply subtype_eq, reflexivity,
|
||
intro r, induction r with a p, fapply subtype_eq, reflexivity
|
||
end
|
||
|
||
definition ab_subgroup_iso_triangle {A : AbGroup} {R S : property A} [is_subgroup A R] [is_subgroup A S]
|
||
(H : Π (a : A), a ∈ R → a ∈ S) (K : Π (a : A), a ∈ S → a ∈ R) :
|
||
incl_of_subgroup R ~ incl_of_subgroup S ∘g ab_subgroup_iso H K :=
|
||
begin
|
||
intro r, induction r, reflexivity
|
||
end
|
||
|
||
definition is_equiv_incl_of_subgroup {G : Group} (H : property G) [is_subgroup G H]
|
||
(h : Πg, g ∈ H) : is_equiv (incl_of_subgroup H) :=
|
||
have is_surjective (incl_of_subgroup H),
|
||
begin intro g, exact image.mk ⟨g, h g⟩ idp end,
|
||
have is_embedding (incl_of_subgroup H), from is_embedding_incl_of_subgroup H,
|
||
function.is_equiv_of_is_surjective_of_is_embedding (incl_of_subgroup H)
|
||
|
||
definition subgroup_isomorphism [constructor] {G : Group} (H : property G) [is_subgroup G H]
|
||
(h : Πg, g ∈ H) : subgroup H ≃g G :=
|
||
isomorphism.mk _ (is_equiv_incl_of_subgroup H h)
|
||
|
||
end group
|
||
|
||
open group
|
||
attribute is_subgroup_image [constructor]
|
||
attribute is_subgroup_kernel [constructor]
|