131 lines
5.6 KiB
Text
131 lines
5.6 KiB
Text
import homotopy.susp types.pointed2 ..move_to_lib
|
||
|
||
open susp eq pointed function is_equiv lift equiv is_trunc
|
||
|
||
namespace susp
|
||
variables {X X' Y Y' Z : Type*}
|
||
definition susp_functor_pconst_homotopy [unfold 3] {X Y : Type*} (x : psusp X) :
|
||
psusp_functor (pconst X Y) x = pt :=
|
||
begin
|
||
induction x,
|
||
{ reflexivity },
|
||
{ exact (merid pt)⁻¹ },
|
||
{ apply eq_pathover, refine !elim_merid ⬝ph _ ⬝hp !ap_constant⁻¹, exact square_of_eq !con.right_inv⁻¹ }
|
||
end
|
||
|
||
definition susp_functor_pconst [constructor] (X Y : Type*) : psusp_functor (pconst X Y) ~* pconst (psusp X) (psusp Y) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ exact susp_functor_pconst_homotopy },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition psusp_pfunctor [constructor] (X Y : Type*) : ppmap X Y →* ppmap (psusp X) (psusp Y) :=
|
||
pmap.mk psusp_functor (eq_of_phomotopy !susp_functor_pconst)
|
||
|
||
definition psusp_pelim [constructor] (X Y : Type*) : ppmap X (Ω Y) →* ppmap (psusp X) Y :=
|
||
ppcompose_left (loop_psusp_counit Y) ∘* psusp_pfunctor X (Ω Y)
|
||
|
||
definition loop_psusp_pintro [constructor] (X Y : Type*) : ppmap (psusp X) Y →* ppmap X (Ω Y) :=
|
||
ppcompose_right (loop_psusp_unit X) ∘* pap1 (psusp X) Y
|
||
|
||
definition loop_psusp_pintro_natural_left (f : X' →* X) :
|
||
psquare (loop_psusp_pintro X Y) (loop_psusp_pintro X' Y)
|
||
(ppcompose_right (psusp_functor f)) (ppcompose_right f) :=
|
||
!pap1_natural_left ⬝h* ppcompose_right_psquare (loop_psusp_unit_natural f)⁻¹*
|
||
|
||
definition loop_psusp_pintro_natural_right (f : Y →* Y') :
|
||
psquare (loop_psusp_pintro X Y) (loop_psusp_pintro X Y')
|
||
(ppcompose_left f) (ppcompose_left (Ω→ f)) :=
|
||
!pap1_natural_right ⬝h* !ppcompose_left_ppcompose_right⁻¹*
|
||
|
||
definition is_equiv_loop_psusp_pintro [constructor] (X Y : Type*) :
|
||
is_equiv (loop_psusp_pintro X Y) :=
|
||
begin
|
||
fapply adjointify,
|
||
{ exact psusp_pelim X Y },
|
||
{ intro g, apply eq_of_phomotopy, exact psusp_adjoint_loop_right_inv g },
|
||
{ intro f, apply eq_of_phomotopy, exact psusp_adjoint_loop_left_inv f }
|
||
end
|
||
|
||
definition psusp_adjoint_loop' [constructor] (X Y : Type*) : ppmap (psusp X) Y ≃* ppmap X (Ω Y) :=
|
||
pequiv_of_pmap (loop_psusp_pintro X Y) (is_equiv_loop_psusp_pintro X Y)
|
||
|
||
definition psusp_adjoint_loop_natural_right (f : Y →* Y') :
|
||
psquare (psusp_adjoint_loop' X Y) (psusp_adjoint_loop' X Y')
|
||
(ppcompose_left f) (ppcompose_left (Ω→ f)) :=
|
||
loop_psusp_pintro_natural_right f
|
||
|
||
definition psusp_adjoint_loop_natural_left (f : X' →* X) :
|
||
psquare (psusp_adjoint_loop' X Y) (psusp_adjoint_loop' X' Y)
|
||
(ppcompose_right (psusp_functor f)) (ppcompose_right f) :=
|
||
loop_psusp_pintro_natural_left f
|
||
|
||
definition iterate_psusp_iterate_psusp_rev (n m : ℕ) (A : Type*) :
|
||
iterate_psusp n (iterate_psusp m A) ≃* iterate_psusp (m + n) A :=
|
||
begin
|
||
induction n with n e,
|
||
{ reflexivity },
|
||
{ exact psusp_pequiv e }
|
||
end
|
||
|
||
definition iterate_psusp_pequiv [constructor] (n : ℕ) {X Y : Type*} (f : X ≃* Y) :
|
||
iterate_psusp n X ≃* iterate_psusp n Y :=
|
||
begin
|
||
induction n with n e,
|
||
{ exact f },
|
||
{ exact psusp_pequiv e }
|
||
end
|
||
|
||
open algebra nat
|
||
definition iterate_psusp_iterate_psusp (n m : ℕ) (A : Type*) :
|
||
iterate_psusp n (iterate_psusp m A) ≃* iterate_psusp (n + m) A :=
|
||
iterate_psusp_iterate_psusp_rev n m A ⬝e* pequiv_of_eq (ap (λk, iterate_psusp k A) (add.comm m n))
|
||
|
||
definition plift_psusp.{u v} : Π(A : Type*), plift.{u v} (psusp A) ≃* psusp (plift.{u v} A) :=
|
||
begin
|
||
intro A,
|
||
calc
|
||
plift.{u v} (psusp A) ≃* psusp A : by exact (pequiv_plift (psusp A))⁻¹ᵉ*
|
||
... ≃* psusp (plift.{u v} A) : by exact psusp_pequiv (pequiv_plift.{u v} A)
|
||
end
|
||
|
||
definition is_contr_susp [instance] (A : Type) [H : is_contr A] : is_contr (susp A) :=
|
||
begin
|
||
apply is_contr.mk north,
|
||
intro x, induction x,
|
||
reflexivity,
|
||
exact merid !center,
|
||
apply eq_pathover_constant_left_id_right, apply square_of_eq,
|
||
exact whisker_left idp (ap merid !eq_of_is_contr)
|
||
end
|
||
|
||
definition is_contr_psusp [instance] (A : Type) [H : is_contr A] : is_contr (psusp A) :=
|
||
is_contr_susp A
|
||
|
||
definition psusp_pelim2 {X Y : Type*} {f g : ⅀ X →* Y} (p : f ~* g) : ((loop_psusp_pintro X Y) f) ~* ((loop_psusp_pintro X Y) g) :=
|
||
pwhisker_right (loop_psusp_unit X) (Ω⇒ p)
|
||
|
||
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*}
|
||
{f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂}
|
||
{f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂}
|
||
|
||
-- rename: psusp_functor_psquare
|
||
definition suspend_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare (⅀→ f₁₀) (⅀→ f₁₂) (⅀→ f₀₁) (⅀→ f₂₁) :=
|
||
sorry
|
||
|
||
definition susp_to_loop_psquare (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂) (f₀₁ : psusp A₀₀ →* A₀₂) (f₂₁ : psusp A₂₀ →* A₂₂) : (psquare (⅀→ f₁₀) f₁₂ f₀₁ f₂₁) → (psquare f₁₀ (Ω→ f₁₂) ((loop_psusp_pintro A₀₀ A₀₂) f₀₁) ((loop_psusp_pintro A₂₀ A₂₂) f₂₁)) :=
|
||
begin
|
||
intro p,
|
||
refine pvconcat _ (ap1_psquare p),
|
||
exact loop_psusp_unit_natural f₁₀
|
||
end
|
||
|
||
definition loop_to_susp_square (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂) (f₀₁ : A₀₀ →* Ω A₀₂) (f₂₁ : A₂₀ →* Ω A₂₂) : (psquare f₁₀ (Ω→ f₁₂) f₀₁ f₂₁) → (psquare (⅀→ f₁₀) f₁₂ ((psusp_pelim A₀₀ A₀₂) f₀₁) ((psusp_pelim A₂₀ A₂₂) f₂₁)) :=
|
||
begin
|
||
intro p,
|
||
refine pvconcat (suspend_psquare p) _,
|
||
exact psquare_transpose (loop_psusp_counit_natural f₁₂)
|
||
end
|
||
|
||
end susp
|