1079 lines
51 KiB
Text
1079 lines
51 KiB
Text
/- equalities between pointed homotopies and other facts about pointed types/functions/homotopies -/
|
||
|
||
-- Author: Floris van Doorn
|
||
|
||
import .move_to_lib
|
||
|
||
open pointed eq equiv function is_equiv unit is_trunc trunc nat algebra group sigma
|
||
|
||
namespace pointed
|
||
|
||
definition loop_pequiv_eq_closed [constructor] {A : Type} {a a' : A} (p : a = a')
|
||
: pointed.MK (a = a) idp ≃* pointed.MK (a' = a') idp :=
|
||
pequiv_of_equiv (loop_equiv_eq_closed p) (con.left_inv p)
|
||
|
||
definition punit_pmap_phomotopy [constructor] {A : Type*} (f : punit →* A) : f ~* pconst punit A :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro u, induction u, exact respect_pt f },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition is_contr_punit_pmap (A : Type*) : is_contr (punit →* A) :=
|
||
is_contr.mk (pconst punit A) (λf, eq_of_phomotopy (punit_pmap_phomotopy f)⁻¹*)
|
||
|
||
definition phomotopy_of_eq_idp {A B : Type*} (f : A →* B) : phomotopy_of_eq idp = phomotopy.refl f :=
|
||
idp
|
||
|
||
definition to_fun_pequiv_trans {X Y Z : Type*} (f : X ≃* Y) (g :Y ≃* Z) : f ⬝e* g ~ g ∘ f :=
|
||
λx, idp
|
||
|
||
definition pr1_phomotopy_eq {A B : Type*} {f g : A →* B} {p q : f ~* g} (r : p = q) (a : A) :
|
||
p a = q a :=
|
||
ap010 to_homotopy r a
|
||
|
||
definition ap1_gen_con_left {A B : Type} {a a' : A} {b₀ b₁ b₂ : B}
|
||
{f : A → b₀ = b₁} {f' : A → b₁ = b₂} {q₀ q₁ : b₀ = b₁} {q₀' q₁' : b₁ = b₂}
|
||
(r₀ : f a = q₀) (r₁ : f a' = q₁) (r₀' : f' a = q₀') (r₁' : f' a' = q₁') (p : a = a') :
|
||
ap1_gen (λa, f a ⬝ f' a) (r₀ ◾ r₀') (r₁ ◾ r₁') p =
|
||
whisker_right q₀' (ap1_gen f r₀ r₁ p) ⬝ whisker_left q₁ (ap1_gen f' r₀' r₁' p) :=
|
||
begin induction r₀, induction r₁, induction r₀', induction r₁', induction p, reflexivity end
|
||
|
||
definition ap1_gen_con_left_idp {A B : Type} {a : A} {b₀ b₁ b₂ : B}
|
||
{f : A → b₀ = b₁} {f' : A → b₁ = b₂} {q₀ : b₀ = b₁} {q₁ : b₁ = b₂}
|
||
(r₀ : f a = q₀) (r₁ : f' a = q₁) :
|
||
ap1_gen_con_left r₀ r₀ r₁ r₁ idp =
|
||
!con.left_inv ⬝ (ap (whisker_right q₁) !con.left_inv ◾ ap (whisker_left _) !con.left_inv)⁻¹ :=
|
||
begin induction r₀, induction r₁, reflexivity end
|
||
|
||
-- /- the pointed type of (unpointed) dependent maps -/
|
||
-- definition pupi [constructor] {A : Type} (P : A → Type*) : Type* :=
|
||
-- pointed.mk' (Πa, P a)
|
||
|
||
-- definition loop_pupi_commute {A : Type} (B : A → Type*) : Ω(pupi B) ≃* pupi (λa, Ω (B a)) :=
|
||
-- pequiv_of_equiv eq_equiv_homotopy rfl
|
||
|
||
-- definition equiv_pupi_right {A : Type} {P Q : A → Type*} (g : Πa, P a ≃* Q a)
|
||
-- : pupi P ≃* pupi Q :=
|
||
-- pequiv_of_equiv (pi_equiv_pi_right g)
|
||
-- begin esimp, apply eq_of_homotopy, intros a, esimp, exact (respect_pt (g a)) end
|
||
|
||
section psquare
|
||
/-
|
||
Squares of pointed maps
|
||
|
||
We treat expressions of the form
|
||
psquare f g h k :≡ k ∘* f ~* g ∘* h
|
||
as squares, where f is the top, g is the bottom, h is the left face and k is the right face.
|
||
Then the following are operations on squares
|
||
-/
|
||
|
||
variables {A A' A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type*}
|
||
{f₁₀ f₁₀' : A₀₀ →* A₂₀} {f₃₀ : A₂₀ →* A₄₀}
|
||
{f₀₁ f₀₁' : A₀₀ →* A₀₂} {f₂₁ f₂₁' : A₂₀ →* A₂₂} {f₄₁ : A₄₀ →* A₄₂}
|
||
{f₁₂ f₁₂' : A₀₂ →* A₂₂} {f₃₂ : A₂₂ →* A₄₂}
|
||
{f₀₃ : A₀₂ →* A₀₄} {f₂₃ : A₂₂ →* A₂₄} {f₄₃ : A₄₂ →* A₄₄}
|
||
{f₁₄ : A₀₄ →* A₂₄} {f₃₄ : A₂₄ →* A₄₄}
|
||
|
||
definition psquare [reducible] (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂)
|
||
(f₀₁ : A₀₀ →* A₀₂) (f₂₁ : A₂₀ →* A₂₂) : Type :=
|
||
f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁
|
||
|
||
definition psquare_of_phomotopy (p : f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁) : psquare f₁₀ f₁₂ f₀₁ f₂₁ :=
|
||
p
|
||
|
||
definition phomotopy_of_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁ :=
|
||
p
|
||
|
||
definition phdeg_square {f f' : A →* A'} (p : f ~* f') : psquare !pid !pid f f' :=
|
||
!pcompose_pid ⬝* p⁻¹* ⬝* !pid_pcompose⁻¹*
|
||
definition pvdeg_square {f f' : A →* A'} (p : f ~* f') : psquare f f' !pid !pid :=
|
||
!pid_pcompose ⬝* p ⬝* !pcompose_pid⁻¹*
|
||
|
||
variables (f₀₁ f₁₀)
|
||
definition phrefl : psquare !pid !pid f₀₁ f₀₁ := phdeg_square phomotopy.rfl
|
||
definition pvrefl : psquare f₁₀ f₁₀ !pid !pid := pvdeg_square phomotopy.rfl
|
||
variables {f₀₁ f₁₀}
|
||
definition phrfl : psquare !pid !pid f₀₁ f₀₁ := phrefl f₀₁
|
||
definition pvrfl : psquare f₁₀ f₁₀ !pid !pid := pvrefl f₁₀
|
||
|
||
definition phconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₃₀ f₃₂ f₂₁ f₄₁) :
|
||
psquare (f₃₀ ∘* f₁₀) (f₃₂ ∘* f₁₂) f₀₁ f₄₁ :=
|
||
!passoc⁻¹* ⬝* pwhisker_right f₁₀ q ⬝* !passoc ⬝* pwhisker_left f₃₂ p ⬝* !passoc⁻¹*
|
||
|
||
definition pvconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₁₂ f₁₄ f₀₃ f₂₃) :
|
||
psquare f₁₀ f₁₄ (f₀₃ ∘* f₀₁) (f₂₃ ∘* f₂₁) :=
|
||
!passoc ⬝* pwhisker_left _ p ⬝* !passoc⁻¹* ⬝* pwhisker_right _ q ⬝* !passoc
|
||
|
||
definition phinverse {f₁₀ : A₀₀ ≃* A₂₀} {f₁₂ : A₀₂ ≃* A₂₂} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare f₁₀⁻¹ᵉ* f₁₂⁻¹ᵉ* f₂₁ f₀₁ :=
|
||
!pid_pcompose⁻¹* ⬝* pwhisker_right _ (pleft_inv f₁₂)⁻¹* ⬝* !passoc ⬝*
|
||
pwhisker_left _
|
||
(!passoc⁻¹* ⬝* pwhisker_right _ p⁻¹* ⬝* !passoc ⬝* pwhisker_left _ !pright_inv ⬝* !pcompose_pid)
|
||
|
||
definition pvinverse {f₀₁ : A₀₀ ≃* A₀₂} {f₂₁ : A₂₀ ≃* A₂₂} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare f₁₂ f₁₀ f₀₁⁻¹ᵉ* f₂₁⁻¹ᵉ* :=
|
||
(phinverse p⁻¹*)⁻¹*
|
||
|
||
definition phomotopy_hconcat (q : f₀₁' ~* f₀₁) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare f₁₀ f₁₂ f₀₁' f₂₁ :=
|
||
p ⬝* pwhisker_left f₁₂ q⁻¹*
|
||
|
||
definition hconcat_phomotopy (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : f₂₁' ~* f₂₁) :
|
||
psquare f₁₀ f₁₂ f₀₁ f₂₁' :=
|
||
pwhisker_right f₁₀ q ⬝* p
|
||
|
||
definition phomotopy_vconcat (q : f₁₀' ~* f₁₀) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare f₁₀' f₁₂ f₀₁ f₂₁ :=
|
||
pwhisker_left f₂₁ q ⬝* p
|
||
|
||
definition vconcat_phomotopy (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : f₁₂' ~* f₁₂) :
|
||
psquare f₁₀ f₁₂' f₀₁ f₂₁ :=
|
||
p ⬝* pwhisker_right f₀₁ q⁻¹*
|
||
|
||
infix ` ⬝h* `:73 := phconcat
|
||
infix ` ⬝v* `:73 := pvconcat
|
||
infixl ` ⬝hp* `:72 := hconcat_phomotopy
|
||
infixr ` ⬝ph* `:72 := phomotopy_hconcat
|
||
infixl ` ⬝vp* `:72 := vconcat_phomotopy
|
||
infixr ` ⬝pv* `:72 := phomotopy_vconcat
|
||
postfix `⁻¹ʰ*`:(max+1) := phinverse
|
||
postfix `⁻¹ᵛ*`:(max+1) := pvinverse
|
||
|
||
definition pwhisker_tl (f : A →* A₀₀) (q : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare (f₁₀ ∘* f) f₁₂ (f₀₁ ∘* f) f₂₁ :=
|
||
!passoc⁻¹* ⬝* pwhisker_right f q ⬝* !passoc
|
||
|
||
definition ap1_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare (Ω→ f₁₀) (Ω→ f₁₂) (Ω→ f₀₁) (Ω→ f₂₁) :=
|
||
!ap1_pcompose⁻¹* ⬝* ap1_phomotopy p ⬝* !ap1_pcompose
|
||
|
||
definition apn_psquare (n : ℕ) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare (Ω→[n] f₁₀) (Ω→[n] f₁₂) (Ω→[n] f₀₁) (Ω→[n] f₂₁) :=
|
||
!apn_pcompose⁻¹* ⬝* apn_phomotopy n p ⬝* !apn_pcompose
|
||
|
||
definition ptrunc_functor_psquare (n : ℕ₋₂) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare (ptrunc_functor n f₁₀) (ptrunc_functor n f₁₂)
|
||
(ptrunc_functor n f₀₁) (ptrunc_functor n f₂₁) :=
|
||
!ptrunc_functor_pcompose⁻¹* ⬝* ptrunc_functor_phomotopy n p ⬝* !ptrunc_functor_pcompose
|
||
|
||
definition homotopy_group_functor_psquare (n : ℕ) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare (π→[n] f₁₀) (π→[n] f₁₂) (π→[n] f₀₁) (π→[n] f₂₁) :=
|
||
!homotopy_group_functor_compose⁻¹* ⬝* homotopy_group_functor_phomotopy n p ⬝*
|
||
!homotopy_group_functor_compose
|
||
|
||
definition homotopy_group_homomorphism_psquare (n : ℕ) [H : is_succ n]
|
||
(p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : hsquare (π→g[n] f₁₀) (π→g[n] f₁₂) (π→g[n] f₀₁) (π→g[n] f₂₁) :=
|
||
begin
|
||
induction H with n, exact to_homotopy (ptrunc_functor_psquare 0 (apn_psquare (succ n) p))
|
||
end
|
||
|
||
end psquare
|
||
|
||
definition phomotopy_of_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) :
|
||
phomotopy_of_eq (eq_of_phomotopy p) = p :=
|
||
to_right_inv (pmap_eq_equiv f g) p
|
||
|
||
definition ap_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) (a : A) :
|
||
ap (λf : A →* B, f a) (eq_of_phomotopy p) = p a :=
|
||
ap010 to_homotopy (phomotopy_of_eq_of_phomotopy p) a
|
||
|
||
definition phomotopy_rec_on_eq [recursor] {A B : Type*} {f g : A →* B}
|
||
{Q : (f ~* g) → Type} (p : f ~* g) (H : Π(q : f = g), Q (phomotopy_of_eq q)) : Q p :=
|
||
phomotopy_of_eq_of_phomotopy p ▸ H (eq_of_phomotopy p)
|
||
|
||
definition phomotopy_rec_on_idp [recursor] {A B : Type*} {f : A →* B}
|
||
{Q : Π{g}, (f ~* g) → Type} {g : A →* B} (p : f ~* g) (H : Q (phomotopy.refl f)) : Q p :=
|
||
begin
|
||
induction p using phomotopy_rec_on_eq,
|
||
induction q, exact H
|
||
end
|
||
|
||
definition phomotopy_rec_on_eq_phomotopy_of_eq {A B : Type*} {f g: A →* B}
|
||
{Q : (f ~* g) → Type} (p : f = g) (H : Π(q : f = g), Q (phomotopy_of_eq q)) :
|
||
phomotopy_rec_on_eq (phomotopy_of_eq p) H = H p :=
|
||
begin
|
||
unfold phomotopy_rec_on_eq,
|
||
refine ap (λp, p ▸ _) !adj ⬝ _,
|
||
refine !tr_compose⁻¹ ⬝ _,
|
||
apply apdt
|
||
end
|
||
|
||
definition phomotopy_rec_on_idp_refl {A B : Type*} (f : A →* B)
|
||
{Q : Π{g}, (f ~* g) → Type} (H : Q (phomotopy.refl f)) :
|
||
phomotopy_rec_on_idp phomotopy.rfl H = H :=
|
||
!phomotopy_rec_on_eq_phomotopy_of_eq
|
||
|
||
definition phomotopy_eq_equiv {A B : Type*} {f g : A →* B} (h k : f ~* g) :
|
||
(h = k) ≃ Σ(p : to_homotopy h ~ to_homotopy k),
|
||
whisker_right (respect_pt g) (p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h :=
|
||
calc
|
||
h = k ≃ phomotopy.sigma_char _ _ h = phomotopy.sigma_char _ _ k
|
||
: eq_equiv_fn_eq (phomotopy.sigma_char f g) h k
|
||
... ≃ Σ(p : to_homotopy h = to_homotopy k),
|
||
pathover (λp, p pt ⬝ respect_pt g = respect_pt f) (to_homotopy_pt h) p (to_homotopy_pt k)
|
||
: sigma_eq_equiv _ _
|
||
... ≃ Σ(p : to_homotopy h = to_homotopy k),
|
||
to_homotopy_pt h = ap (λq, q pt ⬝ respect_pt g) p ⬝ to_homotopy_pt k
|
||
: sigma_equiv_sigma_right (λp, eq_pathover_equiv_Fl p (to_homotopy_pt h) (to_homotopy_pt k))
|
||
... ≃ Σ(p : to_homotopy h = to_homotopy k),
|
||
ap (λq, q pt ⬝ respect_pt g) p ⬝ to_homotopy_pt k = to_homotopy_pt h
|
||
: sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
|
||
... ≃ Σ(p : to_homotopy h = to_homotopy k),
|
||
whisker_right (respect_pt g) (apd10 p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h
|
||
: sigma_equiv_sigma_right (λp, equiv_eq_closed_left _ (whisker_right _ !whisker_right_ap⁻¹))
|
||
... ≃ Σ(p : to_homotopy h ~ to_homotopy k),
|
||
whisker_right (respect_pt g) (p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h
|
||
: sigma_equiv_sigma_left' eq_equiv_homotopy
|
||
|
||
definition phomotopy_eq {A B : Type*} {f g : A →* B} {h k : f ~* g} (p : to_homotopy h ~ to_homotopy k)
|
||
(q : whisker_right (respect_pt g) (p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h) : h = k :=
|
||
to_inv (phomotopy_eq_equiv h k) ⟨p, q⟩
|
||
|
||
definition phomotopy_eq' {A B : Type*} {f g : A →* B} {h k : f ~* g} (p : to_homotopy h ~ to_homotopy k)
|
||
(q : square (to_homotopy_pt h) (to_homotopy_pt k) (whisker_right (respect_pt g) (p pt)) idp) : h = k :=
|
||
phomotopy_eq p (eq_of_square q)⁻¹
|
||
|
||
definition eq_of_phomotopy_refl {X Y : Type*} (f : X →* Y) :
|
||
eq_of_phomotopy (phomotopy.refl f) = idpath f :=
|
||
begin
|
||
apply to_inv_eq_of_eq, reflexivity
|
||
end
|
||
|
||
definition trans_refl {A B : Type*} {f g : A →* B} (p : f ~* g) : p ⬝* phomotopy.refl g = p :=
|
||
begin
|
||
induction A with A a₀, induction B with B b₀,
|
||
induction f with f f₀, induction g with g g₀, induction p with p p₀,
|
||
esimp at *, induction g₀, induction p₀,
|
||
reflexivity
|
||
end
|
||
|
||
definition eq_of_phomotopy_trans {X Y : Type*} {f g h : X →* Y} (p : f ~* g) (q : g ~* h) :
|
||
eq_of_phomotopy (p ⬝* q) = eq_of_phomotopy p ⬝ eq_of_phomotopy q :=
|
||
begin
|
||
induction p using phomotopy_rec_on_idp, induction q using phomotopy_rec_on_idp,
|
||
exact ap eq_of_phomotopy !trans_refl ⬝ whisker_left _ !eq_of_phomotopy_refl⁻¹
|
||
end
|
||
|
||
definition refl_trans {A B : Type*} {f g : A →* B} (p : f ~* g) : phomotopy.refl f ⬝* p = p :=
|
||
begin
|
||
induction p using phomotopy_rec_on_idp,
|
||
induction A with A a₀, induction B with B b₀,
|
||
induction f with f f₀, esimp at *, induction f₀,
|
||
reflexivity
|
||
end
|
||
|
||
definition trans_assoc {A B : Type*} {f g h i : A →* B} (p : f ~* g) (q : g ~* h)
|
||
(r : h ~* i) : p ⬝* q ⬝* r = p ⬝* (q ⬝* r) :=
|
||
begin
|
||
induction r using phomotopy_rec_on_idp,
|
||
induction q using phomotopy_rec_on_idp,
|
||
induction p using phomotopy_rec_on_idp,
|
||
induction B with B b₀,
|
||
induction f with f f₀, esimp at *, induction f₀,
|
||
reflexivity
|
||
end
|
||
|
||
definition refl_symm {A B : Type*} (f : A →* B) : phomotopy.rfl⁻¹* = phomotopy.refl f :=
|
||
begin
|
||
induction B with B b₀,
|
||
induction f with f f₀, esimp at *, induction f₀,
|
||
reflexivity
|
||
end
|
||
|
||
definition symm_symm {A B : Type*} {f g : A →* B} (p : f ~* g) : p⁻¹*⁻¹* = p :=
|
||
phomotopy_eq (λa, !inv_inv)
|
||
begin
|
||
induction p using phomotopy_rec_on_idp, induction f with f f₀, induction B with B b₀,
|
||
esimp at *, induction f₀, reflexivity
|
||
end
|
||
|
||
definition trans_right_inv {A B : Type*} {f g : A →* B} (p : f ~* g) : p ⬝* p⁻¹* = phomotopy.rfl :=
|
||
begin
|
||
induction p using phomotopy_rec_on_idp, exact !refl_trans ⬝ !refl_symm
|
||
end
|
||
|
||
definition trans_left_inv {A B : Type*} {f g : A →* B} (p : f ~* g) : p⁻¹* ⬝* p = phomotopy.rfl :=
|
||
begin
|
||
induction p using phomotopy_rec_on_idp, exact !trans_refl ⬝ !refl_symm
|
||
end
|
||
|
||
definition trans2 {A B : Type*} {f g h : A →* B} {p p' : f ~* g} {q q' : g ~* h}
|
||
(r : p = p') (s : q = q') : p ⬝* q = p' ⬝* q' :=
|
||
ap011 phomotopy.trans r s
|
||
|
||
definition pcompose3 {A B C : Type*} {g g' : B →* C} {f f' : A →* B}
|
||
{p p' : g ~* g'} {q q' : f ~* f'} (r : p = p') (s : q = q') : p ◾* q = p' ◾* q' :=
|
||
ap011 pcompose2 r s
|
||
|
||
definition symm2 {A B : Type*} {f g : A →* B} {p p' : f ~* g} (r : p = p') : p⁻¹* = p'⁻¹* :=
|
||
ap phomotopy.symm r
|
||
|
||
infixl ` ◾** `:80 := pointed.trans2
|
||
infixl ` ◽* `:81 := pointed.pcompose3
|
||
postfix `⁻²**`:(max+1) := pointed.symm2
|
||
|
||
definition trans_symm {A B : Type*} {f g h : A →* B} (p : f ~* g) (q : g ~* h) :
|
||
(p ⬝* q)⁻¹* = q⁻¹* ⬝* p⁻¹* :=
|
||
begin
|
||
induction p using phomotopy_rec_on_idp, induction q using phomotopy_rec_on_idp,
|
||
exact !trans_refl⁻²** ⬝ !trans_refl⁻¹ ⬝ idp ◾** !refl_symm⁻¹
|
||
end
|
||
|
||
definition phwhisker_left {A B : Type*} {f g h : A →* B} (p : f ~* g) {q q' : g ~* h}
|
||
(s : q = q') : p ⬝* q = p ⬝* q' :=
|
||
idp ◾** s
|
||
|
||
definition phwhisker_right {A B : Type*} {f g h : A →* B} {p p' : f ~* g} (q : g ~* h)
|
||
(r : p = p') : p ⬝* q = p' ⬝* q :=
|
||
r ◾** idp
|
||
|
||
definition pwhisker_left_refl {A B C : Type*} (g : B →* C) (f : A →* B) :
|
||
pwhisker_left g (phomotopy.refl f) = phomotopy.refl (g ∘* f) :=
|
||
begin
|
||
induction A with A a₀, induction B with B b₀, induction C with C c₀,
|
||
induction f with f f₀, induction g with g g₀,
|
||
esimp at *, induction g₀, induction f₀, reflexivity
|
||
end
|
||
|
||
definition pwhisker_right_refl {A B C : Type*} (f : A →* B) (g : B →* C) :
|
||
pwhisker_right f (phomotopy.refl g) = phomotopy.refl (g ∘* f) :=
|
||
begin
|
||
induction A with A a₀, induction B with B b₀, induction C with C c₀,
|
||
induction f with f f₀, induction g with g g₀,
|
||
esimp at *, induction g₀, induction f₀, reflexivity
|
||
end
|
||
|
||
definition pcompose2_refl {A B C : Type*} (g : B →* C) (f : A →* B) :
|
||
phomotopy.refl g ◾* phomotopy.refl f = phomotopy.rfl :=
|
||
!pwhisker_right_refl ◾** !pwhisker_left_refl ⬝ !refl_trans
|
||
|
||
definition pcompose2_refl_left {A B C : Type*} (g : B →* C) {f f' : A →* B} (p : f ~* f') :
|
||
phomotopy.rfl ◾* p = pwhisker_left g p :=
|
||
!pwhisker_right_refl ◾** idp ⬝ !refl_trans
|
||
|
||
definition pcompose2_refl_right {A B C : Type*} {g g' : B →* C} (f : A →* B) (p : g ~* g') :
|
||
p ◾* phomotopy.rfl = pwhisker_right f p :=
|
||
idp ◾** !pwhisker_left_refl ⬝ !trans_refl
|
||
|
||
definition pwhisker_left_trans {A B C : Type*} (g : B →* C) {f₁ f₂ f₃ : A →* B}
|
||
(p : f₁ ~* f₂) (q : f₂ ~* f₃) :
|
||
pwhisker_left g (p ⬝* q) = pwhisker_left g p ⬝* pwhisker_left g q :=
|
||
begin
|
||
induction p using phomotopy_rec_on_idp,
|
||
induction q using phomotopy_rec_on_idp,
|
||
refine _ ⬝ !pwhisker_left_refl⁻¹ ◾** !pwhisker_left_refl⁻¹,
|
||
refine ap (pwhisker_left g) !trans_refl ⬝ !pwhisker_left_refl ⬝ !trans_refl⁻¹
|
||
end
|
||
|
||
definition pwhisker_right_trans {A B C : Type*} (f : A →* B) {g₁ g₂ g₃ : B →* C}
|
||
(p : g₁ ~* g₂) (q : g₂ ~* g₃) :
|
||
pwhisker_right f (p ⬝* q) = pwhisker_right f p ⬝* pwhisker_right f q :=
|
||
begin
|
||
induction p using phomotopy_rec_on_idp,
|
||
induction q using phomotopy_rec_on_idp,
|
||
refine _ ⬝ !pwhisker_right_refl⁻¹ ◾** !pwhisker_right_refl⁻¹,
|
||
refine ap (pwhisker_right f) !trans_refl ⬝ !pwhisker_right_refl ⬝ !trans_refl⁻¹
|
||
end
|
||
|
||
definition pwhisker_left_symm {A B C : Type*} (g : B →* C) {f₁ f₂ : A →* B} (p : f₁ ~* f₂) :
|
||
pwhisker_left g p⁻¹* = (pwhisker_left g p)⁻¹* :=
|
||
begin
|
||
induction p using phomotopy_rec_on_idp,
|
||
refine _ ⬝ ap phomotopy.symm !pwhisker_left_refl⁻¹,
|
||
refine ap (pwhisker_left g) !refl_symm ⬝ !pwhisker_left_refl ⬝ !refl_symm⁻¹
|
||
end
|
||
|
||
definition pwhisker_right_symm {A B C : Type*} (f : A →* B) {g₁ g₂ : B →* C} (p : g₁ ~* g₂) :
|
||
pwhisker_right f p⁻¹* = (pwhisker_right f p)⁻¹* :=
|
||
begin
|
||
induction p using phomotopy_rec_on_idp,
|
||
refine _ ⬝ ap phomotopy.symm !pwhisker_right_refl⁻¹,
|
||
refine ap (pwhisker_right f) !refl_symm ⬝ !pwhisker_right_refl ⬝ !refl_symm⁻¹
|
||
end
|
||
|
||
definition trans_eq_of_eq_symm_trans {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||
{r : f ~* h} (s : q = p⁻¹* ⬝* r) : p ⬝* q = r :=
|
||
idp ◾** s ⬝ !trans_assoc⁻¹ ⬝ trans_right_inv p ◾** idp ⬝ !refl_trans
|
||
|
||
definition eq_symm_trans_of_trans_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||
{r : f ~* h} (s : p ⬝* q = r) : q = p⁻¹* ⬝* r :=
|
||
!refl_trans⁻¹ ⬝ !trans_left_inv⁻¹ ◾** idp ⬝ !trans_assoc ⬝ idp ◾** s
|
||
|
||
definition trans_eq_of_eq_trans_symm {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||
{r : f ~* h} (s : p = r ⬝* q⁻¹*) : p ⬝* q = r :=
|
||
s ◾** idp ⬝ !trans_assoc ⬝ idp ◾** trans_left_inv q ⬝ !trans_refl
|
||
|
||
definition eq_trans_symm_of_trans_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||
{r : f ~* h} (s : p ⬝* q = r) : p = r ⬝* q⁻¹* :=
|
||
!trans_refl⁻¹ ⬝ idp ◾** !trans_right_inv⁻¹ ⬝ !trans_assoc⁻¹ ⬝ s ◾** idp
|
||
|
||
definition eq_trans_of_symm_trans_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||
{r : f ~* h} (s : p⁻¹* ⬝* r = q) : r = p ⬝* q :=
|
||
!refl_trans⁻¹ ⬝ !trans_right_inv⁻¹ ◾** idp ⬝ !trans_assoc ⬝ idp ◾** s
|
||
|
||
definition symm_trans_eq_of_eq_trans {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||
{r : f ~* h} (s : r = p ⬝* q) : p⁻¹* ⬝* r = q :=
|
||
idp ◾** s ⬝ !trans_assoc⁻¹ ⬝ trans_left_inv p ◾** idp ⬝ !refl_trans
|
||
|
||
definition eq_trans_of_trans_symm_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||
{r : f ~* h} (s : r ⬝* q⁻¹* = p) : r = p ⬝* q :=
|
||
!trans_refl⁻¹ ⬝ idp ◾** !trans_left_inv⁻¹ ⬝ !trans_assoc⁻¹ ⬝ s ◾** idp
|
||
|
||
definition trans_symm_eq_of_eq_trans {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||
{r : f ~* h} (s : r = p ⬝* q) : r ⬝* q⁻¹* = p :=
|
||
s ◾** idp ⬝ !trans_assoc ⬝ idp ◾** trans_right_inv q ⬝ !trans_refl
|
||
|
||
section phsquare
|
||
/-
|
||
Squares of pointed homotopies
|
||
-/
|
||
|
||
variables {A B C : Type*} {f f' f₀₀ f₂₀ f₄₀ f₀₂ f₂₂ f₄₂ f₀₄ f₂₄ f₄₄ : A →* B}
|
||
{p₁₀ : f₀₀ ~* f₂₀} {p₃₀ : f₂₀ ~* f₄₀}
|
||
{p₀₁ : f₀₀ ~* f₀₂} {p₂₁ : f₂₀ ~* f₂₂} {p₄₁ : f₄₀ ~* f₄₂}
|
||
{p₁₂ : f₀₂ ~* f₂₂} {p₃₂ : f₂₂ ~* f₄₂}
|
||
{p₀₃ : f₀₂ ~* f₀₄} {p₂₃ : f₂₂ ~* f₂₄} {p₄₃ : f₄₂ ~* f₄₄}
|
||
{p₁₄ : f₀₄ ~* f₂₄} {p₃₄ : f₂₄ ~* f₄₄}
|
||
|
||
definition phsquare [reducible] (p₁₀ : f₀₀ ~* f₂₀) (p₁₂ : f₀₂ ~* f₂₂)
|
||
(p₀₁ : f₀₀ ~* f₀₂) (p₂₁ : f₂₀ ~* f₂₂) : Type :=
|
||
p₁₀ ⬝* p₂₁ = p₀₁ ⬝* p₁₂
|
||
|
||
definition phsquare_of_eq (p : p₁₀ ⬝* p₂₁ = p₀₁ ⬝* p₁₂) : phsquare p₁₀ p₁₂ p₀₁ p₂₁ := p
|
||
definition eq_of_phsquare (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : p₁₀ ⬝* p₂₁ = p₀₁ ⬝* p₁₂ := p
|
||
|
||
-- definition phsquare.mk (p : Πx, square (p₁₀ x) (p₁₂ x) (p₀₁ x) (p₂₁ x))
|
||
-- (q : cube (square_of_eq (to_homotopy_pt p₁₀)) (square_of_eq (to_homotopy_pt p₁₂))
|
||
-- (square_of_eq (to_homotopy_pt p₀₁)) (square_of_eq (to_homotopy_pt p₂₁))
|
||
-- (p pt) ids) : phsquare p₁₀ p₁₂ p₀₁ p₂₁ :=
|
||
-- begin
|
||
-- fapply phomotopy_eq,
|
||
-- { intro x, apply eq_of_square (p x) },
|
||
-- { generalize p pt, intro r, exact sorry }
|
||
-- end
|
||
|
||
|
||
definition phhconcat (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) (q : phsquare p₃₀ p₃₂ p₂₁ p₄₁) :
|
||
phsquare (p₁₀ ⬝* p₃₀) (p₁₂ ⬝* p₃₂) p₀₁ p₄₁ :=
|
||
!trans_assoc ⬝ idp ◾** q ⬝ !trans_assoc⁻¹ ⬝ p ◾** idp ⬝ !trans_assoc
|
||
|
||
definition phvconcat (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) (q : phsquare p₁₂ p₁₄ p₀₃ p₂₃) :
|
||
phsquare p₁₀ p₁₄ (p₀₁ ⬝* p₀₃) (p₂₁ ⬝* p₂₃) :=
|
||
(phhconcat p⁻¹ q⁻¹)⁻¹
|
||
|
||
definition phhdeg_square {p₁ p₂ : f ~* f'} (q : p₁ = p₂) : phsquare phomotopy.rfl phomotopy.rfl p₁ p₂ :=
|
||
!refl_trans ⬝ q⁻¹ ⬝ !trans_refl⁻¹
|
||
definition phvdeg_square {p₁ p₂ : f ~* f'} (q : p₁ = p₂) : phsquare p₁ p₂ phomotopy.rfl phomotopy.rfl :=
|
||
!trans_refl ⬝ q ⬝ !refl_trans⁻¹
|
||
|
||
variables (p₀₁ p₁₀)
|
||
definition phhrefl : phsquare phomotopy.rfl phomotopy.rfl p₀₁ p₀₁ := phhdeg_square idp
|
||
definition phvrefl : phsquare p₁₀ p₁₀ phomotopy.rfl phomotopy.rfl := phvdeg_square idp
|
||
variables {p₀₁ p₁₀}
|
||
definition phhrfl : phsquare phomotopy.rfl phomotopy.rfl p₀₁ p₀₁ := phhrefl p₀₁
|
||
definition phvrfl : phsquare p₁₀ p₁₀ phomotopy.rfl phomotopy.rfl := phvrefl p₁₀
|
||
|
||
/-
|
||
The names are very baroque. The following stands for
|
||
"pointed homotopy path-horizontal composition" (i.e. composition on the left with a path)
|
||
The names are obtained by using the ones for squares, and putting "ph" in front of it.
|
||
In practice, use the notation ⬝ph** defined below, which might be easier to remember
|
||
-/
|
||
definition phphconcat {p₀₁'} (p : p₀₁' = p₀₁) (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
|
||
phsquare p₁₀ p₁₂ p₀₁' p₂₁ :=
|
||
by induction p; exact q
|
||
|
||
definition phhpconcat {p₂₁'} (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) (p : p₂₁ = p₂₁') :
|
||
phsquare p₁₀ p₁₂ p₀₁ p₂₁' :=
|
||
by induction p; exact q
|
||
|
||
definition phpvconcat {p₁₀'} (p : p₁₀' = p₁₀) (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
|
||
phsquare p₁₀' p₁₂ p₀₁ p₂₁ :=
|
||
by induction p; exact q
|
||
|
||
definition phvpconcat {p₁₂'} (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) (p : p₁₂ = p₁₂') :
|
||
phsquare p₁₀ p₁₂' p₀₁ p₂₁ :=
|
||
by induction p; exact q
|
||
|
||
definition phhinverse (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : phsquare p₁₀⁻¹* p₁₂⁻¹* p₂₁ p₀₁ :=
|
||
begin
|
||
refine (eq_symm_trans_of_trans_eq _)⁻¹,
|
||
refine !trans_assoc⁻¹ ⬝ _,
|
||
refine (eq_trans_symm_of_trans_eq _)⁻¹,
|
||
exact (eq_of_phsquare p)⁻¹
|
||
end
|
||
|
||
definition phvinverse (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : phsquare p₁₂ p₁₀ p₀₁⁻¹* p₂₁⁻¹* :=
|
||
(phhinverse p⁻¹)⁻¹
|
||
|
||
infix ` ⬝h** `:78 := phhconcat
|
||
infix ` ⬝v** `:78 := phvconcat
|
||
infixr ` ⬝ph** `:77 := phphconcat
|
||
infixl ` ⬝hp** `:77 := phhpconcat
|
||
infixr ` ⬝pv** `:77 := phpvconcat
|
||
infixl ` ⬝vp** `:77 := phvpconcat
|
||
postfix `⁻¹ʰ**`:(max+1) := phhinverse
|
||
postfix `⁻¹ᵛ**`:(max+1) := phvinverse
|
||
|
||
definition phwhisker_rt (p : f ~* f₂₀) (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
|
||
phsquare (p₁₀ ⬝* p⁻¹*) p₁₂ p₀₁ (p ⬝* p₂₁) :=
|
||
!trans_assoc ⬝ idp ◾** (!trans_assoc⁻¹ ⬝ !trans_left_inv ◾** idp ⬝ !refl_trans) ⬝ q
|
||
|
||
definition phwhisker_br (p : f₂₂ ~* f) (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
|
||
phsquare p₁₀ (p₁₂ ⬝* p) p₀₁ (p₂₁ ⬝* p) :=
|
||
!trans_assoc⁻¹ ⬝ q ◾** idp ⬝ !trans_assoc
|
||
|
||
definition phmove_top_of_left' {p₀₁ : f ~* f₀₂} (p : f₀₀ ~* f)
|
||
(q : phsquare p₁₀ p₁₂ (p ⬝* p₀₁) p₂₁) : phsquare (p⁻¹* ⬝* p₁₀) p₁₂ p₀₁ p₂₁ :=
|
||
!trans_assoc ⬝ (eq_symm_trans_of_trans_eq (q ⬝ !trans_assoc)⁻¹)⁻¹
|
||
|
||
definition phmove_bot_of_left {p₀₁ : f₀₀ ~* f} (p : f ~* f₀₂)
|
||
(q : phsquare p₁₀ p₁₂ (p₀₁ ⬝* p) p₂₁) : phsquare p₁₀ (p ⬝* p₁₂) p₀₁ p₂₁ :=
|
||
q ⬝ !trans_assoc
|
||
|
||
definition passoc_phomotopy_right {A B C D : Type*} (h : C →* D) (g : B →* C) {f f' : A →* B}
|
||
(p : f ~* f') : phsquare (passoc h g f) (passoc h g f')
|
||
(pwhisker_left (h ∘* g) p) (pwhisker_left h (pwhisker_left g p)) :=
|
||
begin
|
||
induction p using phomotopy_rec_on_idp,
|
||
refine idp ◾** (ap (pwhisker_left h) !pwhisker_left_refl ⬝ !pwhisker_left_refl) ⬝ _ ⬝
|
||
!pwhisker_left_refl⁻¹ ◾** idp,
|
||
exact !trans_refl ⬝ !refl_trans⁻¹
|
||
end
|
||
|
||
theorem passoc_phomotopy_middle {A B C D : Type*} (h : C →* D) {g g' : B →* C} (f : A →* B)
|
||
(p : g ~* g') : phsquare (passoc h g f) (passoc h g' f)
|
||
(pwhisker_right f (pwhisker_left h p)) (pwhisker_left h (pwhisker_right f p)) :=
|
||
begin
|
||
induction p using phomotopy_rec_on_idp,
|
||
rewrite [pwhisker_right_refl, pwhisker_left_refl],
|
||
rewrite [pwhisker_right_refl, pwhisker_left_refl],
|
||
exact phvrfl
|
||
end
|
||
|
||
definition pwhisker_right_pwhisker_left {A B C : Type*} {g g' : B →* C} {f f' : A →* B}
|
||
(p : g ~* g') (q : f ~* f') :
|
||
phsquare (pwhisker_right f p) (pwhisker_right f' p) (pwhisker_left g q) (pwhisker_left g' q) :=
|
||
begin
|
||
induction p using phomotopy_rec_on_idp,
|
||
induction q using phomotopy_rec_on_idp,
|
||
exact !pwhisker_right_refl ◾** !pwhisker_left_refl ⬝
|
||
!pwhisker_left_refl⁻¹ ◾** !pwhisker_right_refl⁻¹
|
||
end
|
||
|
||
definition pwhisker_left_phsquare (f : B →* C) (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
|
||
phsquare (pwhisker_left f p₁₀) (pwhisker_left f p₁₂)
|
||
(pwhisker_left f p₀₁) (pwhisker_left f p₂₁) :=
|
||
!pwhisker_left_trans⁻¹ ⬝ ap (pwhisker_left f) p ⬝ !pwhisker_left_trans
|
||
|
||
definition pwhisker_right_phsquare (f : C →* A) (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
|
||
phsquare (pwhisker_right f p₁₀) (pwhisker_right f p₁₂)
|
||
(pwhisker_right f p₀₁) (pwhisker_right f p₂₁) :=
|
||
!pwhisker_right_trans⁻¹ ⬝ ap (pwhisker_right f) p ⬝ !pwhisker_right_trans
|
||
|
||
end phsquare
|
||
|
||
definition phomotopy_of_eq_con {A B : Type*} {f g h : A →* B} (p : f = g) (q : g = h) :
|
||
phomotopy_of_eq (p ⬝ q) = phomotopy_of_eq p ⬝* phomotopy_of_eq q :=
|
||
begin induction q, induction p, exact !trans_refl⁻¹ end
|
||
|
||
definition pcompose_left_eq_of_phomotopy {A B C : Type*} (g : B →* C) {f f' : A →* B}
|
||
(H : f ~* f') : ap (λf, g ∘* f) (eq_of_phomotopy H) = eq_of_phomotopy (pwhisker_left g H) :=
|
||
begin
|
||
induction H using phomotopy_rec_on_idp,
|
||
refine ap02 _ !eq_of_phomotopy_refl ⬝ !eq_of_phomotopy_refl⁻¹ ⬝ ap eq_of_phomotopy _,
|
||
exact !pwhisker_left_refl⁻¹
|
||
end
|
||
|
||
definition pcompose_right_eq_of_phomotopy {A B C : Type*} {g g' : B →* C} (f : A →* B)
|
||
(H : g ~* g') : ap (λg, g ∘* f) (eq_of_phomotopy H) = eq_of_phomotopy (pwhisker_right f H) :=
|
||
begin
|
||
induction H using phomotopy_rec_on_idp,
|
||
refine ap02 _ !eq_of_phomotopy_refl ⬝ !eq_of_phomotopy_refl⁻¹ ⬝ ap eq_of_phomotopy _,
|
||
exact !pwhisker_right_refl⁻¹
|
||
end
|
||
|
||
definition phomotopy_of_eq_pcompose_left {A B C : Type*} (g : B →* C) {f f' : A →* B}
|
||
(p : f = f') : phomotopy_of_eq (ap (λf, g ∘* f) p) = pwhisker_left g (phomotopy_of_eq p) :=
|
||
begin
|
||
induction p, exact !pwhisker_left_refl⁻¹
|
||
end
|
||
|
||
definition phomotopy_of_eq_pcompose_right {A B C : Type*} {g g' : B →* C} (f : A →* B)
|
||
(p : g = g') : phomotopy_of_eq (ap (λg, g ∘* f) p) = pwhisker_right f (phomotopy_of_eq p) :=
|
||
begin
|
||
induction p, exact !pwhisker_right_refl⁻¹
|
||
end
|
||
|
||
definition ap1_phomotopy_refl {X Y : Type*} (f : X →* Y) :
|
||
ap1_phomotopy (phomotopy.refl f) = phomotopy.refl (Ω→ f) :=
|
||
begin
|
||
-- induction X with X x₀, induction Y with Y y₀, induction f with f f₀, esimp at *, induction f₀,
|
||
-- fapply phomotopy_eq,
|
||
-- { intro x, unfold [ap1_phomotopy], },
|
||
-- { }
|
||
exact sorry
|
||
end
|
||
|
||
definition ap1_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) :
|
||
ap Ω→ (eq_of_phomotopy p) = eq_of_phomotopy (ap1_phomotopy p) :=
|
||
begin
|
||
induction p using phomotopy_rec_on_idp,
|
||
refine ap02 _ !eq_of_phomotopy_refl ⬝ !eq_of_phomotopy_refl⁻¹ ⬝ ap eq_of_phomotopy _,
|
||
exact !ap1_phomotopy_refl⁻¹
|
||
end
|
||
|
||
-- duplicate of ap_eq_of_phomotopy
|
||
definition to_fun_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) (a : A) :
|
||
ap010 pmap.to_fun (eq_of_phomotopy p) a = p a :=
|
||
begin
|
||
induction p using phomotopy_rec_on_idp,
|
||
exact ap (λx, ap010 pmap.to_fun x a) !eq_of_phomotopy_refl
|
||
end
|
||
|
||
definition respect_pt_pcompose {A B C : Type*} (g : B →* C) (f : A →* B)
|
||
: respect_pt (g ∘* f) = ap g (respect_pt f) ⬝ respect_pt g :=
|
||
idp
|
||
|
||
definition phomotopy_mk_ppmap [constructor] {A B C : Type*} {f g : A →* ppmap B C} (p : Πa, f a ~* g a)
|
||
(q : p pt ⬝* phomotopy_of_eq (respect_pt g) = phomotopy_of_eq (respect_pt f))
|
||
: f ~* g :=
|
||
begin
|
||
apply phomotopy.mk (λa, eq_of_phomotopy (p a)),
|
||
apply eq_of_fn_eq_fn (pmap_eq_equiv _ _), esimp [pmap_eq_equiv],
|
||
refine !phomotopy_of_eq_con ⬝ _,
|
||
refine !phomotopy_of_eq_of_phomotopy ◾** idp ⬝ q,
|
||
end
|
||
|
||
definition pconst_pcompose_pconst (A B C : Type*) :
|
||
pconst_pcompose (pconst A B) = pcompose_pconst (pconst B C) :=
|
||
idp
|
||
|
||
definition pconst_pcompose_phomotopy_pconst {A B C : Type*} {f : A →* B} (p : f ~* pconst A B) :
|
||
pconst_pcompose f = pwhisker_left (pconst B C) p ⬝* pcompose_pconst (pconst B C) :=
|
||
begin
|
||
assert H : Π(p : pconst A B ~* f),
|
||
pconst_pcompose f = pwhisker_left (pconst B C) p⁻¹* ⬝* pcompose_pconst (pconst B C),
|
||
{ intro p, induction p using phomotopy_rec_on_idp, reflexivity },
|
||
refine H p⁻¹* ⬝ ap (pwhisker_left _) !symm_symm ◾** idp,
|
||
end
|
||
|
||
definition passoc_pconst_right {A B C D : Type*} (h : C →* D) (g : B →* C) :
|
||
passoc h g (pconst A B) ⬝* (pwhisker_left h (pcompose_pconst g) ⬝* pcompose_pconst h) =
|
||
pcompose_pconst (h ∘* g) :=
|
||
begin
|
||
fapply phomotopy_eq,
|
||
{ intro a, exact !idp_con },
|
||
{ induction h with h h₀, induction g with g g₀, induction D with D d₀, induction C with C c₀,
|
||
esimp at *, induction g₀, induction h₀, reflexivity }
|
||
end
|
||
|
||
definition passoc_pconst_middle {A A' B B' : Type*} (g : B →* B') (f : A' →* A) :
|
||
passoc g (pconst A B) f ⬝* (pwhisker_left g (pconst_pcompose f) ⬝* pcompose_pconst g) =
|
||
pwhisker_right f (pcompose_pconst g) ⬝* pconst_pcompose f :=
|
||
begin
|
||
fapply phomotopy_eq,
|
||
{ intro a, exact !idp_con ⬝ !idp_con },
|
||
{ induction g with g g₀, induction f with f f₀, induction B' with D d₀, induction A with C c₀,
|
||
esimp at *, induction g₀, induction f₀, reflexivity }
|
||
end
|
||
|
||
definition passoc_pconst_left {A B C D : Type*} (g : B →* C) (f : A →* B) :
|
||
phsquare (passoc (pconst C D) g f) (pconst_pcompose f)
|
||
(pwhisker_right f (pconst_pcompose g)) (pconst_pcompose (g ∘* f)) :=
|
||
begin
|
||
fapply phomotopy_eq,
|
||
{ intro a, exact !idp_con },
|
||
{ induction g with g g₀, induction f with f f₀, induction C with C c₀, induction B with B b₀,
|
||
esimp at *, induction g₀, induction f₀, reflexivity }
|
||
end
|
||
|
||
definition ppcompose_left_pcompose [constructor] {A B C D : Type*} (h : C →* D) (g : B →* C) :
|
||
@ppcompose_left A _ _ (h ∘* g) ~* ppcompose_left h ∘* ppcompose_left g :=
|
||
begin
|
||
fapply phomotopy_mk_ppmap,
|
||
{ exact passoc h g },
|
||
{ refine idp ◾** (!phomotopy_of_eq_con ⬝
|
||
(ap phomotopy_of_eq !pcompose_left_eq_of_phomotopy ⬝ !phomotopy_of_eq_of_phomotopy) ◾**
|
||
!phomotopy_of_eq_of_phomotopy) ⬝ _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹,
|
||
exact passoc_pconst_right h g }
|
||
end
|
||
|
||
definition ppcompose_right_pcompose [constructor] {A B C D : Type*} (g : B →* C) (f : A →* B) :
|
||
@ppcompose_right _ _ D (g ∘* f) ~* ppcompose_right f ∘* ppcompose_right g :=
|
||
begin
|
||
symmetry,
|
||
fapply phomotopy_mk_ppmap,
|
||
{ intro h, exact passoc h g f },
|
||
{ refine idp ◾** !phomotopy_of_eq_of_phomotopy ⬝ _ ⬝ (!phomotopy_of_eq_con ⬝
|
||
(ap phomotopy_of_eq !pcompose_right_eq_of_phomotopy ⬝ !phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy)⁻¹,
|
||
exact passoc_pconst_left g f }
|
||
end
|
||
|
||
definition ppcompose_left_ppcompose_right {A A' B B' : Type*} (g : B →* B') (f : A' →* A) :
|
||
psquare (ppcompose_left g) (ppcompose_left g) (ppcompose_right f) (ppcompose_right f) :=
|
||
begin
|
||
fapply phomotopy_mk_ppmap,
|
||
{ intro h, exact passoc g h f },
|
||
{ refine idp ◾** (!phomotopy_of_eq_con ⬝
|
||
(ap phomotopy_of_eq !pcompose_left_eq_of_phomotopy ⬝ !phomotopy_of_eq_of_phomotopy) ◾**
|
||
!phomotopy_of_eq_of_phomotopy) ⬝ _ ⬝ (!phomotopy_of_eq_con ⬝
|
||
(ap phomotopy_of_eq !pcompose_right_eq_of_phomotopy ⬝ !phomotopy_of_eq_of_phomotopy) ◾**
|
||
!phomotopy_of_eq_of_phomotopy)⁻¹,
|
||
apply passoc_pconst_middle }
|
||
end
|
||
|
||
definition pcompose_pconst_phomotopy {A B C : Type*} {f f' : B →* C} (p : f ~* f') :
|
||
pwhisker_right (pconst A B) p ⬝* pcompose_pconst f' = pcompose_pconst f :=
|
||
begin
|
||
fapply phomotopy_eq,
|
||
{ intro a, exact to_homotopy_pt p },
|
||
{ induction p using phomotopy_rec_on_idp, induction C with C c₀, induction f with f f₀,
|
||
esimp at *, induction f₀, reflexivity }
|
||
end
|
||
|
||
definition pid_pconst (A B : Type*) : pcompose_pconst (pid B) = pid_pcompose (pconst A B) :=
|
||
by reflexivity
|
||
|
||
definition pid_pconst_pcompose {A B C : Type*} (f : A →* B) :
|
||
phsquare (pid_pcompose (pconst B C ∘* f))
|
||
(pcompose_pconst (pid C))
|
||
(pwhisker_left (pid C) (pconst_pcompose f))
|
||
(pconst_pcompose f) :=
|
||
begin
|
||
fapply phomotopy_eq,
|
||
{ reflexivity },
|
||
{ induction f with f f₀, induction B with B b₀, esimp at *, induction f₀, reflexivity }
|
||
end
|
||
|
||
definition ppcompose_left_pconst [constructor] (A B C : Type*) :
|
||
@ppcompose_left A _ _ (pconst B C) ~* pconst (ppmap A B) (ppmap A C) :=
|
||
begin
|
||
fapply phomotopy_mk_ppmap,
|
||
{ exact pconst_pcompose },
|
||
{ refine idp ◾** !phomotopy_of_eq_idp ⬝ !phomotopy_of_eq_of_phomotopy⁻¹ }
|
||
end
|
||
|
||
definition ppcompose_left_phomotopy [constructor] {A B C : Type*} {g g' : B →* C} (p : g ~* g') :
|
||
@ppcompose_left A _ _ g ~* ppcompose_left g' :=
|
||
begin
|
||
induction p using phomotopy_rec_on_idp,
|
||
reflexivity
|
||
end
|
||
|
||
definition ppcompose_right_phomotopy [constructor] {A B C : Type*} {f f' : A →* B} (p : f ~* f') :
|
||
@ppcompose_right _ _ C f ~* ppcompose_right f' :=
|
||
begin
|
||
induction p using phomotopy_rec_on_idp,
|
||
reflexivity
|
||
end
|
||
|
||
definition pppcompose [constructor] (A B C : Type*) : ppmap B C →* ppmap (ppmap A B) (ppmap A C) :=
|
||
pmap.mk ppcompose_left (eq_of_phomotopy !ppcompose_left_pconst)
|
||
|
||
section psquare
|
||
|
||
variables {A A' A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type*}
|
||
{f₁₀ f₁₀' : A₀₀ →* A₂₀} {f₃₀ : A₂₀ →* A₄₀}
|
||
{f₀₁ f₀₁' : A₀₀ →* A₀₂} {f₂₁ f₂₁' : A₂₀ →* A₂₂} {f₄₁ : A₄₀ →* A₄₂}
|
||
{f₁₂ f₁₂' : A₀₂ →* A₂₂} {f₃₂ : A₂₂ →* A₄₂}
|
||
{f₀₃ : A₀₂ →* A₀₄} {f₂₃ : A₂₂ →* A₂₄} {f₄₃ : A₄₂ →* A₄₄}
|
||
{f₁₄ : A₀₄ →* A₂₄} {f₃₄ : A₂₄ →* A₄₄}
|
||
|
||
definition ppcompose_left_psquare {A : Type*} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare (@ppcompose_left A _ _ f₁₀) (ppcompose_left f₁₂)
|
||
(ppcompose_left f₀₁) (ppcompose_left f₂₁) :=
|
||
!ppcompose_left_pcompose⁻¹* ⬝* ppcompose_left_phomotopy p ⬝* !ppcompose_left_pcompose
|
||
|
||
definition ppcompose_right_psquare {A : Type*} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare (@ppcompose_right _ _ A f₁₂) (ppcompose_right f₁₀)
|
||
(ppcompose_right f₂₁) (ppcompose_right f₀₁) :=
|
||
!ppcompose_right_pcompose⁻¹* ⬝* ppcompose_right_phomotopy p⁻¹* ⬝* !ppcompose_right_pcompose
|
||
|
||
definition trans_phomotopy_hconcat {f₀₁' f₀₁''}
|
||
(q₂ : f₀₁'' ~* f₀₁') (q₁ : f₀₁' ~* f₀₁) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
(q₂ ⬝* q₁) ⬝ph* p = q₂ ⬝ph* q₁ ⬝ph* p :=
|
||
idp ◾** (ap (pwhisker_left f₁₂) !trans_symm ⬝ !pwhisker_left_trans) ⬝ !trans_assoc⁻¹
|
||
|
||
definition symm_phomotopy_hconcat {f₀₁'} (q : f₀₁ ~* f₀₁')
|
||
(p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : q⁻¹* ⬝ph* p = p ⬝* pwhisker_left f₁₂ q :=
|
||
idp ◾** ap (pwhisker_left f₁₂) !symm_symm
|
||
|
||
definition refl_phomotopy_hconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : phomotopy.rfl ⬝ph* p = p :=
|
||
idp ◾** (ap (pwhisker_left _) !refl_symm ⬝ !pwhisker_left_refl) ⬝ !trans_refl
|
||
|
||
local attribute phomotopy.rfl [reducible]
|
||
theorem pwhisker_left_phomotopy_hconcat {f₀₁'} (r : f₀₁' ~* f₀₁)
|
||
(p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₁₂ f₁₄ f₀₃ f₂₃) :
|
||
pwhisker_left f₀₃ r ⬝ph* (p ⬝v* q) = (r ⬝ph* p) ⬝v* q :=
|
||
by induction r using phomotopy_rec_on_idp; rewrite [pwhisker_left_refl, +refl_phomotopy_hconcat]
|
||
|
||
theorem pvcompose_pwhisker_left {f₀₁'} (r : f₀₁ ~* f₀₁')
|
||
(p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₁₂ f₁₄ f₀₃ f₂₃) :
|
||
(p ⬝v* q) ⬝* (pwhisker_left f₁₄ (pwhisker_left f₀₃ r)) = (p ⬝* pwhisker_left f₁₂ r) ⬝v* q :=
|
||
by induction r using phomotopy_rec_on_idp; rewrite [+pwhisker_left_refl, + trans_refl]
|
||
|
||
definition phconcat2 {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁} {q q' : psquare f₃₀ f₃₂ f₂₁ f₄₁}
|
||
(r : p = p') (s : q = q') : p ⬝h* q = p' ⬝h* q' :=
|
||
ap011 phconcat r s
|
||
|
||
definition pvconcat2 {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁} {q q' : psquare f₁₂ f₁₄ f₀₃ f₂₃}
|
||
(r : p = p') (s : q = q') : p ⬝v* q = p' ⬝v* q' :=
|
||
ap011 pvconcat r s
|
||
|
||
definition phinverse2 {f₁₀ : A₀₀ ≃* A₂₀} {f₁₂ : A₀₂ ≃* A₂₂} {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁}
|
||
(r : p = p') : p⁻¹ʰ* = p'⁻¹ʰ* :=
|
||
ap phinverse r
|
||
|
||
definition pvinverse2 {f₀₁ : A₀₀ ≃* A₀₂} {f₂₁ : A₂₀ ≃* A₂₂} {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁}
|
||
(r : p = p') : p⁻¹ᵛ* = p'⁻¹ᵛ* :=
|
||
ap pvinverse r
|
||
|
||
definition phomotopy_hconcat2 {q q' : f₀₁' ~* f₀₁} {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁}
|
||
(r : q = q') (s : p = p') : q ⬝ph* p = q' ⬝ph* p' :=
|
||
ap011 phomotopy_hconcat r s
|
||
|
||
definition hconcat_phomotopy2 {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁} {q q' : f₂₁' ~* f₂₁}
|
||
(r : p = p') (s : q = q') : p ⬝hp* q = p' ⬝hp* q' :=
|
||
ap011 hconcat_phomotopy r s
|
||
|
||
definition phomotopy_vconcat2 {q q' : f₁₀' ~* f₁₀} {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁}
|
||
(r : q = q') (s : p = p') : q ⬝pv* p = q' ⬝pv* p' :=
|
||
ap011 phomotopy_vconcat r s
|
||
|
||
definition vconcat_phomotopy2 {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁} {q q' : f₁₂' ~* f₁₂}
|
||
(r : p = p') (s : q = q') : p ⬝vp* q = p' ⬝vp* q' :=
|
||
ap011 vconcat_phomotopy r s
|
||
|
||
-- for consistency, should there be a second star here?
|
||
infix ` ◾h* `:79 := phconcat2
|
||
infix ` ◾v* `:79 := pvconcat2
|
||
infixl ` ◾hp* `:79 := hconcat_phomotopy2
|
||
infixr ` ◾ph* `:79 := phomotopy_hconcat2
|
||
infixl ` ◾vp* `:79 := vconcat_phomotopy2
|
||
infixr ` ◾pv* `:79 := phomotopy_vconcat2
|
||
postfix `⁻²ʰ*`:(max+1) := phinverse2
|
||
postfix `⁻²ᵛ*`:(max+1) := pvinverse2
|
||
|
||
end psquare
|
||
|
||
/- a more explicit proof of ppcompose_left_phomotopy, which might be useful if we need to prove properties about it
|
||
-/
|
||
-- fapply phomotopy_mk_ppmap,
|
||
-- { intro f, exact pwhisker_right f p },
|
||
-- { refine ap (λx, _ ⬝* x) !phomotopy_of_eq_of_phomotopy ⬝ _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹,
|
||
-- exact pcompose_pconst_phomotopy p }
|
||
|
||
definition ppcompose_left_phomotopy_refl {A B C : Type*} (g : B →* C) :
|
||
ppcompose_left_phomotopy (phomotopy.refl g) = phomotopy.refl (@ppcompose_left A _ _ g) :=
|
||
!phomotopy_rec_on_idp_refl
|
||
|
||
-- definition pmap_eq_equiv {X Y : Type*} (f g : X →* Y) : (f = g) ≃ (f ~* g) :=
|
||
-- begin
|
||
-- refine eq_equiv_fn_eq_of_equiv (@pmap.sigma_char X Y) f g ⬝e _,
|
||
-- refine !sigma_eq_equiv ⬝e _,
|
||
-- refine _ ⬝e (phomotopy.sigma_char f g)⁻¹ᵉ,
|
||
-- fapply sigma_equiv_sigma,
|
||
-- { esimp, apply eq_equiv_homotopy },
|
||
-- { induction g with g gp, induction Y with Y y0, esimp, intro p, induction p, esimp at *,
|
||
-- refine !pathover_idp ⬝e _, refine _ ⬝e !eq_equiv_eq_symm,
|
||
-- apply equiv_eq_closed_right, exact !idp_con⁻¹ }
|
||
-- end
|
||
|
||
definition pmap_eq_idp {X Y : Type*} (f : X →* Y) :
|
||
pmap_eq (λx, idpath (f x)) !idp_con⁻¹ = idpath f :=
|
||
ap (λx, eq_of_phomotopy (phomotopy.mk _ x)) !inv_inv ⬝ eq_of_phomotopy_refl f
|
||
|
||
definition pfunext (X Y : Type*) : ppmap X (Ω Y) ≃* Ω (ppmap X Y) :=
|
||
(loop_pmap_commute X Y)⁻¹ᵉ*
|
||
|
||
definition loop_phomotopy [constructor] {A B : Type*} (f : A →* B) : Type* :=
|
||
pointed.MK (f ~* f) phomotopy.rfl
|
||
|
||
definition ppcompose_left_loop_phomotopy [constructor] {A B C : Type*} (g : B →* C) {f : A →* B}
|
||
{h : A →* C} (p : g ∘* f ~* h) : loop_phomotopy f →* loop_phomotopy h :=
|
||
pmap.mk (λq, p⁻¹* ⬝* pwhisker_left g q ⬝* p)
|
||
(idp ◾** !pwhisker_left_refl ◾** idp ⬝ !trans_refl ◾** idp ⬝ !trans_left_inv)
|
||
|
||
definition ppcompose_left_loop_phomotopy' [constructor] {A B C : Type*} (g : B →* C) (f : A →* B)
|
||
: loop_phomotopy f →* loop_phomotopy (g ∘* f) :=
|
||
pmap.mk (λq, pwhisker_left g q) !pwhisker_left_refl
|
||
|
||
definition ppcompose_left_loop_phomotopy_refl {A B C : Type*} (g : B →* C) (f : A →* B)
|
||
: ppcompose_left_loop_phomotopy g phomotopy.rfl ~* ppcompose_left_loop_phomotopy' g f :=
|
||
phomotopy.mk (λq, !refl_symm ◾** idp ◾** idp ⬝ !refl_trans ◾** idp ⬝ !trans_refl)
|
||
begin
|
||
esimp, exact sorry
|
||
end
|
||
|
||
definition loop_ppmap_pequiv' [constructor] (A B : Type*) :
|
||
Ω(ppmap A B) ≃* loop_phomotopy (pconst A B) :=
|
||
pequiv_of_equiv (pmap_eq_equiv _ _) idp
|
||
|
||
-- definition loop_ppmap (A B : Type*) : pointed.MK (pconst A B ~* pconst A B) phomotopy.rfl ≃*
|
||
-- pointed.MK (Σ(p : pconst A B ~ pconst A B), p pt ⬝ rfl = rfl) ⟨homotopy.rfl, idp⟩ :=
|
||
-- pequiv_of_equiv !phomotopy.sigma_char _
|
||
|
||
definition ppmap_loop_pequiv' [constructor] (A B : Type*) :
|
||
loop_phomotopy (pconst A B) ≃* ppmap A (Ω B) :=
|
||
pequiv_of_equiv (!phomotopy.sigma_char ⬝e !pmap.sigma_char⁻¹ᵉ) idp
|
||
|
||
definition loop_ppmap_pequiv [constructor] (A B : Type*) : Ω(ppmap A B) ≃* ppmap A (Ω B) :=
|
||
loop_ppmap_pequiv' A B ⬝e* ppmap_loop_pequiv' A B
|
||
|
||
definition loop_ppmap_pequiv'_natural_right' {X X' : Type} (x₀ : X) (A : Type*) (f : X → X') :
|
||
psquare (loop_ppmap_pequiv' A _) (loop_ppmap_pequiv' A _)
|
||
(Ω→ (ppcompose_left (pmap_of_map f x₀)))
|
||
(ppcompose_left_loop_phomotopy' (pmap_of_map f x₀) !pconst) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ esimp, intro p,
|
||
refine _ ⬝ ap011 (λx y, phomotopy_of_eq (ap1_gen _ x y _))
|
||
proof !eq_of_phomotopy_refl⁻¹ qed proof !eq_of_phomotopy_refl⁻¹ qed,
|
||
refine _ ⬝ ap phomotopy_of_eq !ap1_gen_idp_left⁻¹,
|
||
exact !phomotopy_of_eq_pcompose_left⁻¹ },
|
||
{ refine _ ⬝ !idp_con⁻¹, exact sorry }
|
||
end
|
||
|
||
definition loop_ppmap_pequiv'_natural_right {X X' : Type*} (A : Type*) (f : X →* X') :
|
||
psquare (loop_ppmap_pequiv' A X) (loop_ppmap_pequiv' A X')
|
||
(Ω→ (ppcompose_left f)) (ppcompose_left_loop_phomotopy f !pcompose_pconst) :=
|
||
begin
|
||
induction X' with X' x₀', induction f with f f₀, esimp at f, esimp at f₀, induction f₀,
|
||
apply psquare_of_phomotopy,
|
||
exact sorry
|
||
-- fapply phomotopy.mk,
|
||
-- { esimp, esimp [pmap_eq_equiv], intro p, },
|
||
-- { }
|
||
end
|
||
|
||
definition ppmap_loop_pequiv'_natural_right {X X' : Type*} (A : Type*) (f : X →* X') :
|
||
psquare (ppmap_loop_pequiv' A X) (ppmap_loop_pequiv' A X')
|
||
(ppcompose_left_loop_phomotopy f !pcompose_pconst) (ppcompose_left (Ω→ f)) :=
|
||
begin
|
||
exact sorry
|
||
end
|
||
|
||
definition loop_pmap_commute_natural_right_direct {X X' : Type*} (A : Type*) (f : X →* X') :
|
||
psquare (loop_ppmap_pequiv A X) (loop_ppmap_pequiv A X')
|
||
(Ω→ (ppcompose_left f)) (ppcompose_left (Ω→ f)) :=
|
||
begin
|
||
induction X' with X' x₀', induction f with f f₀, esimp at f, esimp at f₀, induction f₀,
|
||
-- refine _ ⬝* _ ◾* _, rotate 4,
|
||
fapply phomotopy.mk,
|
||
{ intro p, esimp, esimp [pmap_eq_equiv, pcompose_pconst], exact sorry },
|
||
{ exact sorry }
|
||
end
|
||
|
||
definition loop_pmap_commute_natural_left {A A' : Type*} (X : Type*) (f : A' →* A) :
|
||
psquare (loop_pmap_commute A X) (loop_pmap_commute A' X)
|
||
(Ω→ (ppcompose_right f)) (ppcompose_right f) :=
|
||
sorry
|
||
|
||
definition loop_pmap_commute_natural_right {X X' : Type*} (A : Type*) (f : X →* X') :
|
||
psquare (loop_pmap_commute A X) (loop_pmap_commute A X')
|
||
(Ω→ (ppcompose_left f)) (ppcompose_left (Ω→ f)) :=
|
||
loop_ppmap_pequiv'_natural_right A f ⬝h* ppmap_loop_pequiv'_natural_right A f
|
||
|
||
/-
|
||
Do we want to use a structure of homotopies between pointed homotopies? Or are equalities fine?
|
||
If we set up things more generally, we could define this as
|
||
"pointed homotopies between the dependent pointed maps p and q"
|
||
-/
|
||
structure phomotopy2 {A B : Type*} {f g : A →* B} (p q : f ~* g) : Type :=
|
||
(homotopy_eq : p ~ q)
|
||
(homotopy_pt_eq : whisker_right (respect_pt g) (homotopy_eq pt) ⬝ to_homotopy_pt q =
|
||
to_homotopy_pt p)
|
||
|
||
/- this sets it up more generally, for illustrative purposes -/
|
||
structure ppi' (A : Type*) (P : A → Type) (p : P pt) :=
|
||
(to_fun : Π a : A, P a)
|
||
(resp_pt : to_fun (Point A) = p)
|
||
attribute ppi'.to_fun [coercion]
|
||
definition ppi_homotopy' {A : Type*} {P : A → Type} {x : P pt} (f g : ppi' A P x) : Type :=
|
||
ppi' A (λa, f a = g a) (ppi'.resp_pt f ⬝ (ppi'.resp_pt g)⁻¹)
|
||
definition ppi_homotopy2' {A : Type*} {P : A → Type} {x : P pt} {f g : ppi' A P x}
|
||
(p q : ppi_homotopy' f g) : Type :=
|
||
ppi_homotopy' p q
|
||
|
||
-- infix ` ~*2 `:50 := phomotopy2
|
||
|
||
-- variables {A B : Type*} {f g : A →* B} (p q : f ~* g)
|
||
|
||
-- definition phomotopy_eq_equiv_phomotopy2 : p = q ≃ p ~*2 q :=
|
||
-- sorry
|
||
|
||
variables {X X' Y Y' Z : Type*}
|
||
definition pap1 [constructor] (X Y : Type*) : ppmap X Y →* ppmap (Ω X) (Ω Y) :=
|
||
pmap.mk ap1 (eq_of_phomotopy !ap1_pconst)
|
||
|
||
definition ap1_gen_const {A B : Type} {a₁ a₂ : A} (b : B) (p : a₁ = a₂) :
|
||
ap1_gen (const A b) idp idp p = idp :=
|
||
ap1_gen_idp_left (const A b) p ⬝ ap_constant p b
|
||
|
||
definition ap1_gen_compose_const_left
|
||
{A B C : Type} (c : C) (f : A → B) {a₁ a₂ : A} (p : a₁ = a₂) :
|
||
ap1_gen_compose (const B c) f idp idp idp idp p ⬝
|
||
ap1_gen_const c (ap1_gen f idp idp p) =
|
||
ap1_gen_const c p :=
|
||
begin induction p, reflexivity end
|
||
|
||
definition ap1_gen_compose_const_right
|
||
{A B C : Type} (g : B → C) (b : B) {a₁ a₂ : A} (p : a₁ = a₂) :
|
||
ap1_gen_compose g (const A b) idp idp idp idp p ⬝
|
||
ap (ap1_gen g idp idp) (ap1_gen_const b p) =
|
||
ap1_gen_const (g b) p :=
|
||
begin induction p, reflexivity end
|
||
|
||
definition ap1_pcompose_pconst_left {A B C : Type*} (f : A →* B) :
|
||
phsquare (ap1_pcompose (pconst B C) f)
|
||
(ap1_pconst A C)
|
||
(ap1_phomotopy (pconst_pcompose f))
|
||
(pwhisker_right (Ω→ f) (ap1_pconst B C) ⬝* pconst_pcompose (Ω→ f)) :=
|
||
begin
|
||
induction A with A a₀, induction B with B b₀, induction C with C c₀, induction f with f f₀,
|
||
esimp at *, induction f₀,
|
||
refine idp ◾** !trans_refl ⬝ _ ⬝ !refl_trans⁻¹ ⬝ !ap1_phomotopy_refl⁻¹ ◾** idp,
|
||
fapply phomotopy_eq,
|
||
{ exact ap1_gen_compose_const_left c₀ f },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition ap1_pcompose_pconst_right {A B C : Type*} (g : B →* C) :
|
||
phsquare (ap1_pcompose g (pconst A B))
|
||
(ap1_pconst A C)
|
||
(ap1_phomotopy (pcompose_pconst g))
|
||
(pwhisker_left (Ω→ g) (ap1_pconst A B) ⬝* pcompose_pconst (Ω→ g)) :=
|
||
begin
|
||
induction A with A a₀, induction B with B b₀, induction C with C c₀, induction g with g g₀,
|
||
esimp at *, induction g₀,
|
||
refine idp ◾** !trans_refl ⬝ _ ⬝ !refl_trans⁻¹ ⬝ !ap1_phomotopy_refl⁻¹ ◾** idp,
|
||
fapply phomotopy_eq,
|
||
{ exact ap1_gen_compose_const_right g b₀ },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition pap1_natural_left [constructor] (f : X' →* X) :
|
||
psquare (pap1 X Y) (pap1 X' Y) (ppcompose_right f) (ppcompose_right (Ω→ f)) :=
|
||
begin
|
||
fapply phomotopy_mk_ppmap,
|
||
{ intro g, exact !ap1_pcompose⁻¹* },
|
||
{ refine idp ◾** (ap phomotopy_of_eq (!ap1_eq_of_phomotopy ◾ idp ⬝ !eq_of_phomotopy_trans⁻¹) ⬝
|
||
!phomotopy_of_eq_of_phomotopy) ⬝ _ ⬝ (ap phomotopy_of_eq (!pcompose_right_eq_of_phomotopy ◾
|
||
idp ⬝ !eq_of_phomotopy_trans⁻¹) ⬝ !phomotopy_of_eq_of_phomotopy)⁻¹,
|
||
apply symm_trans_eq_of_eq_trans, exact (ap1_pcompose_pconst_left f)⁻¹ }
|
||
end
|
||
|
||
definition pap1_natural_right [constructor] (f : Y →* Y') :
|
||
psquare (pap1 X Y) (pap1 X Y') (ppcompose_left f) (ppcompose_left (Ω→ f)) :=
|
||
begin
|
||
fapply phomotopy_mk_ppmap,
|
||
{ intro g, exact !ap1_pcompose⁻¹* },
|
||
{ refine idp ◾** (ap phomotopy_of_eq (!ap1_eq_of_phomotopy ◾ idp ⬝ !eq_of_phomotopy_trans⁻¹) ⬝
|
||
!phomotopy_of_eq_of_phomotopy) ⬝ _ ⬝ (ap phomotopy_of_eq (!pcompose_left_eq_of_phomotopy ◾
|
||
idp ⬝ !eq_of_phomotopy_trans⁻¹) ⬝ !phomotopy_of_eq_of_phomotopy)⁻¹,
|
||
apply symm_trans_eq_of_eq_trans, exact (ap1_pcompose_pconst_right f)⁻¹ }
|
||
end
|
||
|
||
end pointed
|