Spectral/spectrum/basic.hlean
2018-01-17 19:17:05 -05:00

942 lines
37 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2016 Michael Shulman. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Michael Shulman, Floris van Doorn, Egbert Rijke, Stefano Piceghello, Yuri Sulyma
-/
import homotopy.LES_of_homotopy_groups ..algebra.splice ..algebra.seq_colim ..homotopy.EM ..homotopy.fwedge
..pointed_cubes
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
succ_str EM EM.ops function unit lift is_trunc
/---------------------
Basic definitions
---------------------/
/- The basic definitions of spectra and prespectra make sense for any successor-structure. -/
structure gen_prespectrum (N : succ_str) :=
(deloop : N → Type*)
(glue : Π(n:N), (deloop n) →* (Ω (deloop (S n))))
attribute gen_prespectrum.deloop [coercion]
structure is_spectrum [class] {N : succ_str} (E : gen_prespectrum N) :=
(is_equiv_glue : Πn, is_equiv (gen_prespectrum.glue E n))
attribute is_spectrum.is_equiv_glue [instance]
structure gen_spectrum (N : succ_str) :=
(to_prespectrum : gen_prespectrum N)
(to_is_spectrum : is_spectrum to_prespectrum)
attribute gen_spectrum.to_prespectrum [coercion]
attribute gen_spectrum.to_is_spectrum [instance]
attribute gen_spectrum._trans_of_to_prespectrum [unfold 2]
-- Classically, spectra and prespectra use the successor structure +.
-- But we will use + instead, to reduce case analysis later on.
abbreviation prespectrum := gen_prespectrum +
definition prespectrum.mk (Y : → Type*) (e : Π(n : ), Y n →* Ω (Y (n+1))) : prespectrum :=
gen_prespectrum.mk Y e
abbreviation spectrum := gen_spectrum +
abbreviation spectrum.mk (Y : prespectrum) (e : is_spectrum Y) : spectrum :=
gen_spectrum.mk Y e
namespace spectrum
definition glue [unfold 2] {{N : succ_str}} := @gen_prespectrum.glue N
--definition glue := (@gen_prespectrum.glue +)
definition equiv_glue {N : succ_str} (E : gen_prespectrum N) [H : is_spectrum E] (n:N) : (E n) ≃* (Ω (E (S n))) :=
pequiv_of_pmap (glue E n) (is_spectrum.is_equiv_glue E n)
definition equiv_glue2 (Y : spectrum) (n : ) : Ω (Ω (Y (n+2))) ≃* Y n :=
begin
refine (!equiv_glue ⬝e* loop_pequiv_loop (!equiv_glue ⬝e* loop_pequiv_loop _))⁻¹ᵉ*,
refine pequiv_of_eq (ap Y _),
exact add.assoc n 1 1
end
definition gluen {N : succ_str} (X : gen_prespectrum N) (n : N) (k : )
: X n →* Ω[k] (X (n +' k)) :=
by induction k with k f; reflexivity; exact !loopn_succ_in⁻¹ᵉ* ∘* Ω→[k] (glue X (n +' k)) ∘* f
-- note: the forward map is (currently) not definitionally equal to gluen. Is that a problem?
definition equiv_gluen {N : succ_str} (X : gen_spectrum N) (n : N) (k : )
: X n ≃* Ω[k] (X (n +' k)) :=
by induction k with k f; reflexivity; exact f ⬝e* (loopn_pequiv_loopn k (equiv_glue X (n +' k))
⬝e* !loopn_succ_in⁻¹ᵉ*)
definition equiv_gluen_inv_succ {N : succ_str} (X : gen_spectrum N) (n : N) (k : ) :
(equiv_gluen X n (k+1))⁻¹ᵉ* ~*
(equiv_gluen X n k)⁻¹ᵉ* ∘* Ω→[k] (equiv_glue X (n +' k))⁻¹ᵉ* ∘* !loopn_succ_in :=
begin
refine !trans_pinv ⬝* pwhisker_left _ _, refine !trans_pinv ⬝* _, refine pwhisker_left _ !pinv_pinv
end
definition succ_str_add_eq_int_add (n : ) (m : ) : @succ_str.add sint n m = n + m :=
begin
induction m with m IH,
{ symmetry, exact add_zero n },
{ exact ap int.succ IH ⬝ add.assoc n m 1 }
end
-- a square when we compose glue with transporting over a path in N
definition glue_ptransport {N : succ_str} (X : gen_prespectrum N) {n n' : N} (p : n = n') :
glue X n' ∘* ptransport X p ~* Ω→ (ptransport X (ap S p)) ∘* glue X n :=
by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹* ⬝* pwhisker_right _ !ap1_pid⁻¹*
-- Sometimes an -indexed version does arise naturally, however, so
-- we give a standard way to extend an -indexed (pre)spectrum to a
-- -indexed one.
definition psp_of_nat_indexed [constructor] (E : gen_prespectrum +) : gen_prespectrum + :=
gen_prespectrum.mk
(λ(n:), match n with
| of_nat k := E k
| neg_succ_of_nat k := Ω[succ k] (E 0)
end)
begin
intros n, cases n with n n: esimp,
{ exact (gen_prespectrum.glue E n) },
cases n with n,
{ exact (pid _) },
{ exact (pid _) }
end
definition is_spectrum_of_nat_indexed [instance] (E : gen_prespectrum +) [H : is_spectrum E] : is_spectrum (psp_of_nat_indexed E) :=
begin
apply is_spectrum.mk, intros n, cases n with n n: esimp,
{ apply is_spectrum.is_equiv_glue },
cases n with n: apply is_equiv_id
end
protected definition of_nat_indexed (E : gen_prespectrum +) [H : is_spectrum E] : spectrum
:= spectrum.mk (psp_of_nat_indexed E) (is_spectrum_of_nat_indexed E)
-- In fact, a (pre)spectrum indexed on any pointed successor structure
-- gives rise to one indexed on +, so in this sense + is a
-- "universal" successor structure for indexing spectra.
definition succ_str.of_nat {N : succ_str} (z : N) : → N
| succ_str.of_nat zero := z
| succ_str.of_nat (succ k) := S (succ_str.of_nat k)
definition psp_of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_prespectrum N) : prespectrum :=
psp_of_nat_indexed (gen_prespectrum.mk (λn, E (succ_str.of_nat z n)) (λn, gen_prespectrum.glue E (succ_str.of_nat z n)))
definition is_spectrum_of_gen_indexed [instance] {N : succ_str} (z : N) (E : gen_prespectrum N) [H : is_spectrum E]
: is_spectrum (psp_of_gen_indexed z E) :=
begin
apply is_spectrum_of_nat_indexed, apply is_spectrum.mk, intros n, esimp, apply is_spectrum.is_equiv_glue
end
protected definition of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_spectrum N) : spectrum :=
gen_spectrum.mk (psp_of_gen_indexed z E) (is_spectrum_of_gen_indexed z E)
-- Generally it's easiest to define a spectrum by giving 'equiv's
-- directly. This works for any indexing succ_str.
protected definition MK [constructor] {N : succ_str} (deloop : N → Type*)
(glue : Π(n:N), (deloop n) ≃* (Ω (deloop (S n)))) : gen_spectrum N :=
gen_spectrum.mk (gen_prespectrum.mk deloop (λ(n:N), glue n))
(begin
apply is_spectrum.mk, intros n, esimp,
apply pequiv.to_is_equiv -- Why doesn't typeclass inference find this?
end)
-- Finally, we combine them and give a way to produce a (-)spectrum from a -indexed family of 'equiv's.
protected definition Mk [constructor] (deloop : → Type*)
(glue : Π(n:), (deloop n) ≃* (Ω (deloop (nat.succ n)))) : spectrum :=
spectrum.of_nat_indexed (spectrum.MK deloop glue)
------------------------------
-- Maps and homotopies of (pre)spectra
------------------------------
-- These make sense for any succ_str.
structure smap {N : succ_str} (E F : gen_prespectrum N) :=
(to_fun : Π(n:N), E n →* F n)
(glue_square : Π(n:N), psquare
(to_fun n)
(Ω→ (to_fun (S n)))
(glue E n)
(glue F n)
)
definition smap_sigma {N : succ_str} (X Y : gen_prespectrum N) : Type :=
Σ (to_fun : Π(n:N), X n →* Y n),
Π(n:N), psquare
(to_fun n)
(Ω→ (to_fun (S n)))
(glue X n)
(glue Y n)
open smap
infix ` →ₛ `:30 := smap
attribute smap.to_fun [coercion]
definition smap_to_sigma [unfold 4] {N : succ_str} {X Y : gen_prespectrum N} (f : X →ₛ Y) : smap_sigma X Y :=
begin
induction f with f fsq,
exact sigma.mk f fsq,
end
definition smap_to_struc [unfold 4] {N : succ_str} {X Y : gen_prespectrum N} (f : smap_sigma X Y) : X →ₛ Y :=
begin
induction f with f fsq,
exact smap.mk f fsq,
end
definition smap_to_sigma_isretr {N : succ_str} {X Y : gen_prespectrum N} (f : smap_sigma X Y) :
smap_to_sigma (smap_to_struc f) = f :=
begin
induction f, reflexivity
end
definition smap_to_sigma_issec {N : succ_str} {X Y : gen_prespectrum N} (f : X →ₛ Y) :
smap_to_struc (smap_to_sigma f) = f :=
begin
induction f, reflexivity
end
definition smap_sigma_equiv [constructor] {N : succ_str} (X Y : gen_prespectrum N) : (smap_sigma X Y) ≃ (X →ₛ Y) :=
begin
fapply equiv.mk,
exact smap_to_struc,
fapply adjointify,
exact smap_to_sigma,
exact smap_to_sigma_issec,
exact smap_to_sigma_isretr
end
-- A version of 'glue_square' in the spectrum case that uses 'equiv_glue'
definition sglue_square {N : succ_str} {E F : gen_spectrum N} (f : E →ₛ F) (n : N)
: psquare (f n) (Ω→ (f (S n))) (equiv_glue E n) (equiv_glue F n) :=
glue_square f n
definition sid [constructor] [refl] {N : succ_str} (E : gen_prespectrum N) : E →ₛ E :=
smap.mk (λ n, pid (E n)) (λ n, psquare_of_phtpy_bot (ap1_pid) (psquare_of_pid_top_bot (phomotopy.rfl)))
--print sid
-- smap.mk (λn, pid (E n))
-- (λn, calc glue E n ∘* pid (E n) ~* glue E n : pcompose_pid
-- ... ~* pid (Ω(E (S n))) ∘* glue E n : pid_pcompose
-- ... ~* Ω→(pid (E (S n))) ∘* glue E n : pwhisker_right (glue E n) ap1_pid⁻¹*)
definition scompose [trans] {N : succ_str} {X Y Z : gen_prespectrum N}
(g : Y →ₛ Z) (f : X →ₛ Y) : X →ₛ Z :=
smap.mk (λn, g n ∘* f n)
(λ n, psquare_of_phtpy_bot
(ap1_pcompose (g (S n)) (f (S n)))
(psquare_hcompose (glue_square f n) (glue_square g n)))
/-
(λn, calc glue Z n ∘* to_fun g n ∘* to_fun f n
~* (glue Z n ∘* to_fun g n) ∘* to_fun f n : passoc
... ~* (Ω→(to_fun g (S n)) ∘* glue Y n) ∘* to_fun f n : pwhisker_right (to_fun f n) (glue_square g n)
... ~* Ω→(to_fun g (S n)) ∘* (glue Y n ∘* to_fun f n) : passoc
... ~* Ω→(to_fun g (S n)) ∘* (Ω→ (f (S n)) ∘* glue X n) : pwhisker_left (Ω→(to_fun g (S n))) (glue_square f n)
... ~* (Ω→(to_fun g (S n)) ∘* Ω→(f (S n))) ∘* glue X n : passoc
... ~* Ω→(to_fun g (S n) ∘* to_fun f (S n)) ∘* glue X n : pwhisker_right (glue X n) (ap1_pcompose _ _))
-/
infixr ` ∘ₛ `:60 := scompose
definition szero [constructor] {N : succ_str} (E F : gen_prespectrum N) : E →ₛ F :=
smap.mk (λn, pconst (E n) (F n))
(λn, psquare_of_phtpy_bot (ap1_pconst (E (S n)) (F (S n)))
(psquare_of_pconst_top_bot (glue E n) (glue F n)))
/-
(λn, calc glue F n ∘* pconst (E n) (F n) ~* pconst (E n) (Ω(F (S n))) : pcompose_pconst
... ~* pconst (Ω(E (S n))) (Ω(F (S n))) ∘* glue E n : pconst_pcompose
... ~* Ω→(pconst (E (S n)) (F (S n))) ∘* glue E n : pwhisker_right (glue E n) (ap1_pconst _ _))
-/
definition stransport [constructor] {N : succ_str} {A : Type} {a a' : A} (p : a = a')
(E : A → gen_prespectrum N) : E a →ₛ E a' :=
smap.mk (λn, ptransport (λa, E a n) p)
begin
intro n, induction p,
exact !pcompose_pid ⬝* !pid_pcompose⁻¹* ⬝* pwhisker_right _ !ap1_pid⁻¹*,
end
structure shomotopy {N : succ_str} {E F : gen_prespectrum N} (f g : E →ₛ F) :=
(to_phomotopy : Πn, f n ~* g n)
(glue_homotopy : Πn, ptube_v
(to_phomotopy n)
(ap1_phomotopy (to_phomotopy (S n)))
(glue_square f n)
(glue_square g n))
/- (glue_homotopy : Πn, phsquare
(pwhisker_left (glue F n) (to_phomotopy n))
(pwhisker_right (glue E n) (ap1_phomotopy (to_phomotopy (S n))))
(glue_square f n)
(glue_square g n))
-/
infix ` ~ₛ `:50 := shomotopy
definition shomotopy_compose {N : succ_str} {E F : gen_prespectrum N} {f g h : E →ₛ F} (p : g ~ₛ h) (q : f ~ₛ g) : f ~ₛ h :=
shomotopy.mk
(λn, (shomotopy.to_phomotopy q n) ⬝* (shomotopy.to_phomotopy p n))
begin
intro n, unfold [ptube_v],
rewrite (pwhisker_left_trans _),
rewrite ap1_phomotopy_trans,
rewrite (pwhisker_right_trans _),
exact phhconcat ((shomotopy.glue_homotopy q) n) ((shomotopy.glue_homotopy p) n)
end
definition shomotopy_inverse {N : succ_str} {E F : gen_prespectrum N} {f g : E →ₛ F} (p : f ~ₛ g) : g ~ₛ f :=
shomotopy.mk (λn, (shomotopy.to_phomotopy p n)⁻¹*) begin
intro n, unfold [ptube_v],
rewrite (pwhisker_left_symm _ _),
rewrite [-ap1_phomotopy_symm],
rewrite (pwhisker_right_symm _ _),
exact phhinverse ((shomotopy.glue_homotopy p) n)
end
/- Comparing the structure of shomotopy with a Σ-type -/
definition shomotopy_sigma {N : succ_str} {X Y : gen_prespectrum N} (f g : X →ₛ Y) : Type :=
Σ (phtpy : Π (n : N), f n ~* g n),
Πn, ptube_v
(phtpy n)
(ap1_phomotopy (phtpy (S n)))
(glue_square f n)
(glue_square g n)
definition shomotopy_to_sigma [unfold 6] {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) : shomotopy_sigma f g :=
begin
induction H with H Hsq,
exact sigma.mk H Hsq,
end
definition shomotopy_to_struct [unfold 6] {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : shomotopy_sigma f g) : f ~ₛ g :=
begin
induction H with H Hsq,
exact shomotopy.mk H Hsq,
end
definition shomotopy_to_sigma_isretr {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : shomotopy_sigma f g) :
shomotopy_to_sigma (shomotopy_to_struct H) = H
:=
begin
induction H with H Hsq, reflexivity
end
definition shomotopy_to_sigma_issec {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) :
shomotopy_to_struct (shomotopy_to_sigma H) = H
:=
begin
induction H, reflexivity
end
definition shomotopy_sigma_equiv [constructor] {N : succ_str} {X Y : gen_prespectrum N} (f g : X →ₛ Y) :
shomotopy_sigma f g ≃ (f ~ₛ g) :=
begin
fapply equiv.mk,
exact shomotopy_to_struct,
fapply adjointify,
exact shomotopy_to_sigma,
exact shomotopy_to_sigma_issec,
exact shomotopy_to_sigma_isretr,
end
/- equivalence of shomotopy and eq -/
/-
definition eq_of_shomotopy_pfun {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) (n : N) : f n = g n :=
begin
fapply eq_of_fn_eq_fn (smap_sigma_equiv X Y),
repeat exact sorry
end-/
definition fam_phomotopy_of_eq
{N : Type} {X Y: N → Type*} (f g : Π n, X n →* Y n) : (f = g) ≃ (Π n, f n ~* g n) :=
(eq.eq_equiv_homotopy) ⬝e pi_equiv_pi_right (λ n, pmap_eq_equiv (f n) (g n))
/-
definition phomotopy_rec_on_eq [recursor]
{k' : ppi B x₀}
{Q : (k ~* k') → Type}
(p : k ~* k')
(H : Π(q : k = k'), Q (phomotopy_of_eq q))
: Q p :=
phomotopy_of_eq_of_phomotopy p ▸ H (eq_of_phomotopy p)
-/
definition fam_phomotopy_rec_on_eq {N : Type} {X Y : N → Type*} (f g : Π n, X n →* Y n)
{Q : (Π n, f n ~* g n) → Type}
(p : Π n, f n ~* g n)
(H : Π (q : f = g), Q (fam_phomotopy_of_eq f g q)) : Q p :=
begin
refine _ ▸ H ((fam_phomotopy_of_eq f g)⁻¹ᵉ p),
have q : to_fun (fam_phomotopy_of_eq f g) (to_fun (fam_phomotopy_of_eq f g)⁻¹ᵉ p) = p,
from right_inv (fam_phomotopy_of_eq f g) p,
krewrite q
end
/-
definition phomotopy_rec_idp [recursor]
{Q : Π {k' : ppi B x₀}, (k ~* k') → Type}
(q : Q (phomotopy.refl k)) {k' : ppi B x₀} (H : k ~* k') : Q H :=
begin
induction H using phomotopy_rec_on_eq with t,
induction t, exact eq_phomotopy_refl_phomotopy_of_eq_refl k ▸ q,
end
-/
--set_option pp.coercions true
definition fam_phomotopy_rec_idp {N : Type} {X Y : N → Type*} (f : Π n, X n →* Y n)
(Q : Π (g : Π n, X n →* Y n) (H : Π n, f n ~* g n), Type)
(q : Q f (λ n, phomotopy.rfl))
(g : Π n, X n →* Y n) (H : Π n, f n ~* g n) : Q g H :=
begin
fapply fam_phomotopy_rec_on_eq,
refine λ(p : f = g), _, --ugly trick
intro p, induction p,
exact q,
end
definition eq_of_shomotopy {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) : f = g :=
begin
fapply eq_of_fn_eq_fn (smap_sigma_equiv X Y)⁻¹ᵉ,
induction f with f fsq,
induction g with g gsq,
induction H with H Hsq,
fapply sigma_eq,
fapply eq_of_homotopy,
intro n, fapply eq_of_phomotopy, exact H n,
fapply pi_pathover_constant,
intro n,
esimp at *,
revert g H gsq Hsq n,
refine fam_phomotopy_rec_idp f _ _,
intro gsq Hsq n,
refine change_path _ _,
-- have p : eq_of_homotopy (λ n, eq_of_phomotopy phomotopy.rfl) = refl f,
reflexivity,
refine (eq_of_homotopy_eta rfl)⁻¹ ⬝ _,
fapply ap (eq_of_homotopy), fapply eq_of_homotopy, intro n, refine (eq_of_phomotopy_refl _)⁻¹,
-- fapply eq_of_phomotopy,
fapply pathover_idp_of_eq,
note Hsq' := ptube_v_eq_bot phomotopy.rfl (ap1_phomotopy_refl _) (fsq n) (gsq n) (Hsq n),
unfold ptube_v at *,
unfold phsquare at *,
refine _ ⬝ Hsq'⁻¹ ⬝ _,
refine (trans_refl (fsq n))⁻¹ ⬝ _,
exact idp ◾** (pwhisker_right_refl _ _)⁻¹,
refine _ ⬝ (refl_trans (gsq n)),
refine _ ◾** idp,
exact pwhisker_left_refl _ _,
end
------------------------------
-- Equivalences of prespectra
------------------------------
definition spectrum_pequiv_of_pequiv_succ {E F : spectrum} (n : ) (e : E (n + 1) ≃* F (n + 1)) :
E n ≃* F n :=
equiv_glue E n ⬝e* loop_pequiv_loop e ⬝e* (equiv_glue F n)⁻¹ᵉ*
definition spectrum_pequiv_of_nat {E F : spectrum} (e : Π(n : ), E n ≃* F n) (n : ) :
E n ≃* F n :=
begin
induction n with n n,
exact e n,
induction n with n IH,
{ exact spectrum_pequiv_of_pequiv_succ -[1+0] (e 0) },
{ exact spectrum_pequiv_of_pequiv_succ -[1+succ n] IH }
end
definition spectrum_pequiv_of_nat_add {E F : spectrum} (m : )
(e : Π(n : ), E (n + m) ≃* F (n + m)) : Π(n : ), E n ≃* F n :=
begin
apply spectrum_pequiv_of_nat,
refine nat.rec_down _ m e _,
intro n f k, cases k with k,
exact spectrum_pequiv_of_pequiv_succ _ (f 0),
exact pequiv_ap E (ap of_nat (succ_add k n)) ⬝e* f k ⬝e*
pequiv_ap F (ap of_nat (succ_add k n))⁻¹
end
definition is_contr_spectrum_of_nat {E : spectrum} (e : Π(n : ), is_contr (E n)) (n : ) :
is_contr (E n) :=
begin
have Πn, is_contr (E (n + 1)) → is_contr (E n),
from λn H, @(is_trunc_equiv_closed_rev -2 !equiv_glue) (is_contr_loop_of_is_contr H),
induction n with n n,
exact e n,
induction n with n IH,
{ exact this -[1+0] (e 0) },
{ exact this -[1+succ n] IH }
end
structure is_sequiv {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) : Type :=
(to_linv : F →ₛ E)
(is_retr : to_linv ∘ₛf ~ₛ sid E)
(to_rinv : F →ₛ E)
(is_sec : f ∘ₛ to_rinv ~ₛ sid F)
structure sequiv {N : succ_str} (E F : gen_prespectrum N) : Type :=
(to_fun : E →ₛ F)
(to_is_sequiv : is_sequiv to_fun)
infix ` ≃ₛ ` : 25 := sequiv
definition is_sequiv_smap {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) : Type := Π (n: N), is_equiv (f n)
definition is_sequiv_of_smap_pequiv {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) (H : is_sequiv_smap f) (n : N) : E n ≃* F n :=
begin
fapply pequiv_of_pmap,
exact f n,
fapply H,
end
definition is_sequiv_of_smap_inv {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) (H : is_sequiv_smap f) : F →ₛ E :=
begin
fapply smap.mk,
intro n,
exact (is_sequiv_of_smap_pequiv f H n)⁻¹ᵉ*,
intro n,
refine _ ⬝vp* (to_pinv_loopn_pequiv_loopn 1 (is_sequiv_of_smap_pequiv f H (S n)))⁻¹*,
fapply phinverse,
exact glue_square f n,
end
local postfix `⁻¹ˢ` : (max + 1) := is_sequiv_of_smap_inv
definition is_sequiv_of_smap_isretr {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) (H : is_sequiv_smap f) : is_sequiv_of_smap_inv f H ∘ₛ f ~ₛ sid E :=
begin
fapply shomotopy.mk,
intro n,
fapply pleft_inv,
intro n,
refine _ ⬝hp** _,
repeat exact sorry,
end
definition is_sequiv_of_smap_issec {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) (H : is_sequiv_smap f) : f ∘ₛ is_sequiv_of_smap_inv f H ~ₛ sid F :=
begin
repeat exact sorry
end
definition is_sequiv_of_smap {N : succ_str} {E F : gen_prespectrum N} (f : E →ₛ F) : is_sequiv_smap f → is_sequiv f :=
begin
intro H,
fapply is_sequiv.mk,
fapply is_sequiv_of_smap_inv f H,
fapply is_sequiv_of_smap_isretr f H,
fapply is_sequiv_of_smap_inv f H,
fapply is_sequiv_of_smap_issec f H,
end
/---------
Fibers
----------/
definition sfiber [constructor] {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) :
gen_spectrum N :=
spectrum.MK (λn, pfiber (f n))
(λn, (loop_pfiber (f (S n)))⁻¹ᵉ* ∘*ᵉ pfiber_pequiv_of_square _ _ (sglue_square f n))
/- the map from the fiber to the domain -/
definition spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y) : sfiber f →ₛ X :=
smap.mk (λn, ppoint (f n))
begin
intro n,
refine _ ⬝* !passoc,
refine _ ⬝* pwhisker_right _ !ppoint_loop_pfiber_inv⁻¹*,
rexact (pfiber_pequiv_of_square_ppoint (equiv_glue X n) (equiv_glue Y n) (sglue_square f n))⁻¹*
end
definition scompose_spoint {N : succ_str} {X Y : gen_spectrum N} (f : X →ₛ Y)
: f ∘ₛ spoint f ~ₛ !szero :=
begin
fapply shomotopy.mk,
{ intro n, exact pcompose_ppoint (f n) },
{ intro n, exact sorry }
end
/---------------------
Homotopy groups
---------------------/
-- Here we start to reap the rewards of using -indexing: we can
-- read off the homotopy groups without any tedious case-analysis of
-- n. We increment by 2 in order to ensure that they are all
-- automatically abelian groups.
definition shomotopy_group (n : ) (E : spectrum) : AbGroup := πag[2] (E (2 - n))
notation `πₛ[`:95 n:0 `]`:0 := shomotopy_group n
definition shomotopy_group_fun (n : ) {E F : spectrum} (f : E →ₛ F) :
πₛ[n] E →g πₛ[n] F :=
proof π→g[2] (f (2 - n)) qed
definition shomotopy_group_isomorphism_of_pequiv (n : ) {E F : spectrum} (f : Πn, E n ≃* F n) :
πₛ[n] E ≃g πₛ[n] F :=
proof homotopy_group_isomorphism_of_pequiv 1 (f (2 - n)) qed
definition shomotopy_group_isomorphism_of_pequiv_nat (n : ) {E F : spectrum}
(f : Πn, E n ≃* F n) : πₛ[n] E ≃g πₛ[n] F :=
shomotopy_group_isomorphism_of_pequiv n (spectrum_pequiv_of_nat f)
notation `πₛ→[`:95 n:0 `]`:0 := shomotopy_group_fun n
/- properties about homotopy groups -/
definition equiv_glue_neg (X : spectrum) (n : ) : X (2 - succ n) ≃* Ω (X (2 - n)) :=
have H : succ (2 - succ n) = 2 - n, from ap succ !sub_sub⁻¹ ⬝ sub_add_cancel (2-n) 1,
equiv_glue X (2 - succ n) ⬝e* loop_pequiv_loop (pequiv_of_eq (ap X H))
definition π_glue (X : spectrum) (n : ) : π[2] (X (2 - succ n)) ≃* π[3] (X (2 - n)) :=
homotopy_group_pequiv 2 (equiv_glue_neg X n)
definition πg_glue (X : spectrum) (n : ) : πg[2] (X (2 - succ n)) ≃g πg[3] (X (2 - n)) :=
begin
change πg[2] (X (2 - succ n)) ≃g πg[2] (Ω (X (2 - n))),
apply homotopy_group_isomorphism_of_pequiv,
exact equiv_glue_neg X n
end
definition πg_glue_homotopy_π_glue (X : spectrum) (n : ) : πg_glue X n ~ π_glue X n :=
by reflexivity
definition π_glue_square {X Y : spectrum} (f : X →ₛ Y) (n : ) :
π_glue Y n ∘* π→[2] (f (2 - succ n)) ~* π→[3] (f (2 - n)) ∘* π_glue X n :=
begin
change π→[2] (equiv_glue_neg Y n) ∘* π→[2] (f (2 - succ n)) ~*
π→[2] (Ω→ (f (2 - n))) ∘* π→[2] (equiv_glue_neg X n),
refine homotopy_group_functor_psquare 2 _,
refine !sglue_square ⬝v* ap1_psquare !pequiv_of_eq_commute
end
definition homotopy_group_spectrum_irrel_one {n m : } {k : } (E : spectrum) (p : n + 1 = m + k)
[Hk : is_succ k] : πg[k] (E n) ≃g π₁ (E m) :=
begin
induction Hk with k,
change π₁ (Ω[k] (E n)) ≃g π₁ (E m),
apply homotopy_group_isomorphism_of_pequiv 0,
symmetry,
have m + k = n, from (pred_succ (m + k))⁻¹ ⬝ ap pred (add.assoc m k 1 ⬝ p⁻¹) ⬝ pred_succ n,
induction (succ_str_add_eq_int_add m k ⬝ this),
exact equiv_gluen E m k
end
definition homotopy_group_spectrum_irrel {n m : } {l k : } (E : spectrum) (p : n + l = m + k)
[Hk : is_succ k] [Hl : is_succ l] : πg[k] (E n) ≃g πg[l] (E m) :=
proof
have Πa b c : , a + (b + c) = c + (b + a), from λa b c,
!add.assoc⁻¹ ⬝ add.comm (a + b) c ⬝ ap (λx, c + x) (add.comm a b),
have n + 1 = m + 1 - l + k, from
ap succ (add_sub_cancel n l)⁻¹ ⬝ !add.assoc ⬝ ap (λx, x + (-l + 1)) p ⬝ !add.assoc ⬝
ap (λx, m + x) (this k (-l) 1) ⬝ !add.assoc⁻¹ ⬝ !add.assoc⁻¹,
homotopy_group_spectrum_irrel_one E this ⬝g
(homotopy_group_spectrum_irrel_one E (sub_add_cancel (m+1) l)⁻¹)⁻¹ᵍ
qed
definition shomotopy_group_isomorphism_homotopy_group {n m : } {l : } (E : spectrum) (p : n + m = l)
[H : is_succ l] : πₛ[n] E ≃g πg[l] (E m) :=
have 2 - n + l = m + 2, from
ap (λx, 2 - n + x) p⁻¹ ⬝ !add.assoc⁻¹ ⬝ ap (λx, x + m) (sub_add_cancel 2 n) ⬝ add.comm 2 m,
homotopy_group_spectrum_irrel E this
definition shomotopy_group_pequiv_homotopy_group_ab {n m : } {l : } (E : spectrum) (p : n + m = l)
[H : is_at_least_two l] : πₛ[n] E ≃g πag[l] (E m) :=
begin
induction H with l,
exact shomotopy_group_isomorphism_homotopy_group E p
end
definition shomotopy_group_pequiv_homotopy_group {n m : } {l : } (E : spectrum) (p : n + m = l) :
πₛ[n] E ≃* π[l] (E m) :=
begin
cases l with l,
{ apply ptrunc_pequiv_ptrunc, symmetry,
change E m ≃* Ω (Ω (E (2 - n))),
refine !equiv_glue ⬝e* loop_pequiv_loop _,
refine !equiv_glue ⬝e* loop_pequiv_loop _,
apply pequiv_ap E,
have -n = m, from neg_eq_of_add_eq_zero p,
induction this,
rexact add.assoc (-n) 1 1 ⬝ add.comm (-n) 2 },
{ exact pequiv_of_isomorphism (shomotopy_group_isomorphism_homotopy_group E p) }
end
/- the long exact sequence of homotopy groups for spectra -/
section LES
open chain_complex prod fin group
universe variable u
parameters {X Y : spectrum.{u}} (f : X →ₛ Y)
definition LES_of_shomotopy_groups : chain_complex +3 :=
splice (λ(n : ), LES_of_homotopy_groups (f (2 - n))) (2, 0)
(π_glue Y) (π_glue X) (π_glue_square f)
-- This LES is definitionally what we want:
example (n : ) : LES_of_shomotopy_groups (n, 0) = πₛ[n] Y := idp
example (n : ) : LES_of_shomotopy_groups (n, 1) = πₛ[n] X := idp
example (n : ) : LES_of_shomotopy_groups (n, 2) = πₛ[n] (sfiber f) := idp
example (n : ) : cc_to_fn LES_of_shomotopy_groups (n, 0) = πₛ→[n] f := idp
example (n : ) : cc_to_fn LES_of_shomotopy_groups (n, 1) = πₛ→[n] (spoint f) := idp
-- the maps are ugly for (n, 2)
definition ab_group_LES_of_shomotopy_groups : Π(v : +3), ab_group (LES_of_shomotopy_groups v)
| (n, fin.mk 0 H) := proof AbGroup.struct (πₛ[n] Y) qed
| (n, fin.mk 1 H) := proof AbGroup.struct (πₛ[n] X) qed
| (n, fin.mk 2 H) := proof AbGroup.struct (πₛ[n] (sfiber f)) qed
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
local attribute ab_group_LES_of_shomotopy_groups [instance]
definition is_mul_hom_LES_of_shomotopy_groups :
Π(v : +3), is_mul_hom (cc_to_fn LES_of_shomotopy_groups v)
| (n, fin.mk 0 H) := proof homomorphism.struct (πₛ→[n] f) qed
| (n, fin.mk 1 H) := proof homomorphism.struct (πₛ→[n] (spoint f)) qed
| (n, fin.mk 2 H) := proof homomorphism.struct
(homomorphism_LES_of_homotopy_groups_fun (f (2 - n)) (1, 2) ∘g πg_glue Y n) qed
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition is_exact_LES_of_shomotopy_groups : is_exact LES_of_shomotopy_groups :=
begin
apply is_exact_splice, intro n, apply is_exact_LES_of_homotopy_groups,
end
-- In the comments below is a start on an explicit description of the LES for spectra
-- Maybe it's slightly nicer to work with than the above version
definition shomotopy_groups [reducible] : +3 → AbGroup
| (n, fin.mk 0 H) := πₛ[n] Y
| (n, fin.mk 1 H) := πₛ[n] X
| (n, fin.mk k H) := πₛ[n] (sfiber f)
definition shomotopy_groups_fun : Π(v : +3), shomotopy_groups (S v) →g shomotopy_groups v
| (n, fin.mk 0 H) := proof πₛ→[n] f qed
| (n, fin.mk 1 H) := proof πₛ→[n] (spoint f) qed
| (n, fin.mk 2 H) := proof homomorphism_LES_of_homotopy_groups_fun (f (2 - n)) (nat.succ nat.zero, 2) ∘g
πg_glue Y n ∘g (by reflexivity) qed
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
--(homomorphism_LES_of_homotopy_groups_fun (f (2 - n)) (1, 2) ∘g πg_glue Y n)
end LES
/- homotopy group of a prespectrum -/
definition pshomotopy_group_hom (n : ) (E : prespectrum) (k : )
: πag[k + 2] (E (-n - 2 + k)) →g πag[k + 3] (E (-n - 2 + (k + 1))) :=
begin
refine _ ∘g π→g[k+2] (glue E _),
refine (ghomotopy_group_succ_in _ (k+1))⁻¹ᵍ ∘g _,
refine homotopy_group_isomorphism_of_pequiv (k+1)
(loop_pequiv_loop (pequiv_of_eq (ap E (add.assoc (-n - 2) k 1))))
end
definition pshomotopy_group (n : ) (E : prespectrum) : AbGroup :=
group.seq_colim (λ(k : ), πag[k+2] (E (-n - 2 + k))) (pshomotopy_group_hom n E)
notation `πₚₛ[`:95 n:0 `]`:0 := pshomotopy_group n
definition pshomotopy_group_fun (n : ) {E F : prespectrum} (f : E →ₛ F) :
πₚₛ[n] E →g πₚₛ[n] F :=
proof
group.seq_colim_functor (λk, π→g[k+2] (f (-n - 2 +[] k)))
begin
intro k,
note sq1 := homotopy_group_homomorphism_psquare (k+2) (ptranspose (smap.glue_square f (-n - 2 +[] k))),
note sq2 := homotopy_group_functor_psquare (k+2) (ap1_psquare (ptransport_natural E F f (add.assoc (-n - 2) k 1))),
note sq3 := (homotopy_group_succ_in_natural (k+2) (f (-n - 2 +[] (k+1))))⁻¹ʰᵗʸʰ,
note sq4 := hsquare_of_psquare sq2,
note rect := sq1 ⬝htyh sq4 ⬝htyh sq3,
exact sorry --sq1 ⬝htyh sq4 ⬝htyh sq3,
end
qed
notation `πₚₛ→[`:95 n:0 `]`:0 := pshomotopy_group_fun n
/- a chain complex of spectra (not yet used anywhere) -/
structure sp_chain_complex (N : succ_str) : Type :=
(car : N → spectrum)
(fn : Π(n : N), car (S n) →ₛ car n)
(is_chain_complex : Πn, fn n ∘ₛ fn (S n) ~ₛ szero _ _)
section
variables {N : succ_str} (X : sp_chain_complex N) (n : N)
definition scc_to_car [unfold 2] [coercion] := @sp_chain_complex.car
definition scc_to_fn [unfold 2] : X (S n) →ₛ X n := sp_chain_complex.fn X n
definition scc_is_chain_complex [unfold 2] : scc_to_fn X n ∘ₛ scc_to_fn X (S n) ~ₛ szero _ _
:= sp_chain_complex.is_chain_complex X n
end
------------------------------
-- Suspension prespectra
------------------------------
-- Suspension prespectra are one that's naturally indexed on the natural numbers
definition psp_susp (X : Type*) : gen_prespectrum + :=
gen_prespectrum.mk (λn, iterate_susp n X) (λn, loop_susp_unit (iterate_susp n X))
-- The sphere prespectrum
definition psp_sphere : gen_prespectrum + :=
psp_susp bool.pbool
/-------------------------------
Cotensor of spectra by types
-------------------------------/
-- Makes sense for any indexing succ_str. Could be done for
-- prespectra too, but as with truncation, why bother?
definition sp_cotensor [constructor] {N : succ_str} (A : Type*) (B : gen_spectrum N) :
gen_spectrum N :=
spectrum.MK (λn, ppmap A (B n))
(λn, (loop_ppmap_commute A (B (S n)))⁻¹ᵉ* ∘*ᵉ (pequiv_ppcompose_left (equiv_glue B n)))
/- unpointed cotensor -/
definition sp_ucotensor [constructor] {N : succ_str} (A : Type) (B : gen_spectrum N) :
gen_spectrum N :=
spectrum.MK (λn, A →ᵘ* B n)
(λn, pumap_pequiv_right A (equiv_glue B n) ⬝e* (loop_pumap A (B (S n)))⁻¹ᵉ*)
----------------------------------------
-- Sections of parametrized spectra
----------------------------------------
definition spi [constructor] {N : succ_str} (A : Type*) (E : A → gen_spectrum N) :
gen_spectrum N :=
spectrum.MK (λn, Π*a, E a n)
(λn, !loop_pppi_pequiv⁻¹ᵉ* ∘*ᵉ ppi_pequiv_right (λa, equiv_glue (E a) n))
definition spi_compose_left [constructor] {N : succ_str} {A : Type*} {E F : A -> gen_spectrum N}
(f : Πa, E a →ₛ F a) : spi A E →ₛ spi A F :=
smap.mk (λn, pppi_compose_left (λa, f a n))
begin
intro n,
exact psquare_pppi_compose_left (λa, (glue_square (f a) n)) ⬝v* !loop_pppi_pequiv_natural⁻¹ᵛ*
end
-- unpointed spi
definition supi [constructor] {N : succ_str} (A : Type) (E : A → gen_spectrum N) :
gen_spectrum N :=
spectrum.MK (λn, Πᵘ*a, E a n)
(λn, pupi_pequiv_right (λa, equiv_glue (E a) n) ⬝e* (loop_pupi (λa, E a (S n)))⁻¹ᵉ*)
/- Mapping spectra -/
-- note: see also cotensor above
/-
suspension of a spectrum
this is just a shift. We could call a shift in the other direction loopn,
though it might be more convenient to just take a negative suspension
-/
definition ssusp [constructor] {N : succ_str} (X : gen_spectrum N) : gen_spectrum N :=
spectrum.MK (λn, X (S n)) (λn, equiv_glue X (S n))
definition ssuspn [constructor] (k : ) (X : spectrum) : spectrum :=
spectrum.MK (λn, X (n + k))
(λn, equiv_glue X (n + k) ⬝e* loop_pequiv_loop (pequiv_ap X !add.right_comm))
definition shomotopy_group_ssuspn (k : ) (X : spectrum) (n : ) :
πₛ[k] (ssuspn n X) ≃g πₛ[k - n] X :=
have k - n + (2 - k + n) = 2, from
!add.comm ⬝
ap (λx, x + (k - n)) (!add.assoc ⬝ ap (λx, 2 + x) (ap (λx, -k + x) !neg_neg⁻¹ ⬝ !neg_add⁻¹)) ⬝
sub_add_cancel 2 (k - n),
(shomotopy_group_isomorphism_homotopy_group X this)⁻¹ᵍ
/- Tensor by spaces -/
/- Cofibers and stability -/
------------------------------
-- Contractible spectrum
------------------------------
definition sunit.{u} [constructor] : spectrum.{u} :=
spectrum.MK (λn, plift punit) (λn, pequiv_of_is_contr _ _ _ _)
definition shomotopy_group_sunit.{u} (n : ) : πₛ[n] sunit.{u} ≃g trivial_ab_group_lift.{u} :=
phomotopy_group_plift_punit 2
definition add_point_spectrum [constructor] {X : Type} (Y : X → spectrum) (x : X₊) : spectrum :=
spectrum.MK (λn, add_point_over (λx, Y x n) x)
begin
intro n, induction x with x,
apply pequiv_of_is_contr,
apply is_trunc_lift,
apply is_contr_loop_of_is_contr, apply is_trunc_lift,
exact equiv_glue (Y x) n
end
open option
definition shomotopy_group_add_point_spectrum {X : Type} (Y : X → spectrum) (n : ) :
Π(x : X₊), πₛ[n] (add_point_spectrum Y x) ≃g add_point_AbGroup (λ (x : X), πₛ[n] (Y x)) x
| (some x) := by reflexivity
| none := proof phomotopy_group_plift_punit 2 qed
/- The Eilenberg-MacLane spectrum -/
definition EM_spectrum /-[constructor]-/ (G : AbGroup) : spectrum :=
spectrum.Mk (K G) (λn, (loop_EM G n)⁻¹ᵉ*)
definition EM_spectrum_pequiv {G H : AbGroup} (e : G ≃g H) (n : ) :
EM_spectrum G n ≃* EM_spectrum H n :=
spectrum_pequiv_of_nat (λk, EM_pequiv_EM k e) n
definition EM_spectrum_trivial.{u} (n : ) :
EM_spectrum trivial_ab_group_lift.{u} n ≃* trivial_ab_group_lift.{u} :=
pequiv_of_is_contr _ _
(is_contr_spectrum_of_nat (λk, is_contr_EM k !is_trunc_lift) n)
!is_trunc_lift
definition is_contr_EM_spectrum_neg (G : AbGroup) (n : ) : is_contr (EM_spectrum G (-[1+n])) :=
begin
induction n with n IH,
{ apply is_contr_loop, exact is_trunc_EM G 0 },
{ apply is_contr_loop_of_is_contr, exact IH }
end
definition is_contr_EM_spectrum (G : AbGroup) (n : ) (H : is_contr G) : is_contr (EM_spectrum G n) :=
begin
cases n with n n,
{ apply is_contr_EM n H },
{ apply is_contr_EM_spectrum_neg G n }
end
/- K(πₗ(Aₖ),l) ≃* K(πₙ(A),l) for l = n + k -/
definition EM_type_pequiv_EM (A : spectrum) {n k : } {l : } (p : n + k = l) :
EM_type (A k) l ≃* EM (πₛ[n] A) l :=
begin
symmetry,
cases l with l,
{ exact shomotopy_group_pequiv_homotopy_group A p },
{ cases l with l,
{ apply EM1_pequiv_EM1, exact shomotopy_group_isomorphism_homotopy_group A p },
{ apply EMadd1_pequiv_EMadd1 (l+1), exact shomotopy_group_isomorphism_homotopy_group A p }}
end
/- Wedge of prespectra -/
open fwedge
definition fwedge_prespectrum.{u v} {I : Type.{v}} (X : I -> prespectrum.{u}) : prespectrum.{max u v} :=
begin
fconstructor,
{ intro n, exact fwedge (λ i, X i n) },
{ intro n, fapply fwedge_pmap,
intro i, exact Ω→ !pinl ∘* !glue }
end
end spectrum