729 lines
27 KiB
Text
729 lines
27 KiB
Text
/-
|
||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn
|
||
|
||
Constructions with groups
|
||
-/
|
||
|
||
import algebra.group_theory hit.set_quotient types.sigma types.list types.sum
|
||
|
||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function
|
||
equiv
|
||
namespace group
|
||
|
||
/- Subgroups -/
|
||
|
||
structure subgroup_rel (G : Group) :=
|
||
(R : G → Prop)
|
||
(Rone : R one)
|
||
(Rmul : Π{g h}, R g → R h → R (g * h))
|
||
(Rinv : Π{g}, R g → R (g⁻¹))
|
||
|
||
structure normal_subgroup_rel (G : Group) extends subgroup_rel G :=
|
||
(is_normal : Π{g} h, R g → R (h * g * h⁻¹))
|
||
|
||
attribute subgroup_rel.R [coercion]
|
||
abbreviation subgroup_to_rel [unfold 2] := @subgroup_rel.R
|
||
abbreviation subgroup_has_one [unfold 2] := @subgroup_rel.Rone
|
||
abbreviation subgroup_respect_mul [unfold 2] := @subgroup_rel.Rmul
|
||
abbreviation subgroup_respect_inv [unfold 2] := @subgroup_rel.Rinv
|
||
abbreviation is_normal_subgroup [unfold 2] := @normal_subgroup_rel.is_normal
|
||
|
||
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
||
{A B : CommGroup}
|
||
|
||
theorem is_normal_subgroup' (h : G) (r : N g) : N (h⁻¹ * g * h) :=
|
||
inv_inv h ▸ is_normal_subgroup N h⁻¹ r
|
||
|
||
definition normal_subgroup_rel_comm.{u} (R : subgroup_rel.{_ u} A) : normal_subgroup_rel.{_ u} A :=
|
||
⦃normal_subgroup_rel, R,
|
||
is_normal := abstract begin
|
||
intros g h r, xrewrite [mul.comm h g, mul_inv_cancel_right], exact r
|
||
end end⦄
|
||
|
||
theorem is_normal_subgroup_rev (h : G) (r : N (h * g * h⁻¹)) : N g :=
|
||
have H : h⁻¹ * (h * g * h⁻¹) * h = g, from calc
|
||
h⁻¹ * (h * g * h⁻¹) * h = h⁻¹ * (h * g) * h⁻¹ * h : by rewrite [-mul.assoc h⁻¹]
|
||
... = h⁻¹ * (h * g) : by rewrite [inv_mul_cancel_right]
|
||
... = g : inv_mul_cancel_left,
|
||
H ▸ is_normal_subgroup' N h r
|
||
|
||
theorem is_normal_subgroup_rev' (h : G) (r : N (h⁻¹ * g * h)) : N g :=
|
||
is_normal_subgroup_rev N h⁻¹ ((inv_inv h)⁻¹ ▸ r)
|
||
|
||
theorem normal_subgroup_insert (r : N k) (r' : N (g * h)) : N (g * (k * h)) :=
|
||
have H1 : N ((g * h) * (h⁻¹ * k * h)), from
|
||
subgroup_respect_mul N r' (is_normal_subgroup' N h r),
|
||
have H2 : (g * h) * (h⁻¹ * k * h) = g * (k * h), from calc
|
||
(g * h) * (h⁻¹ * k * h) = g * (h * (h⁻¹ * k * h)) : mul.assoc
|
||
... = g * (h * (h⁻¹ * (k * h))) : by rewrite [mul.assoc h⁻¹]
|
||
... = g * (k * h) : by rewrite [mul_inv_cancel_left],
|
||
show N (g * (k * h)), from H2 ▸ H1
|
||
|
||
-- this is just (Σ(g : G), H g), but only defined if (H g) is a prop
|
||
definition sg : Type := {g : G | H g}
|
||
local attribute sg [reducible]
|
||
variable {H}
|
||
definition subgroup_one [constructor] : sg H := ⟨one, !subgroup_has_one⟩
|
||
definition subgroup_inv [unfold 3] : sg H → sg H :=
|
||
λv, ⟨v.1⁻¹, subgroup_respect_inv H v.2⟩
|
||
definition subgroup_mul [unfold 3 4] : sg H → sg H → sg H :=
|
||
λv w, ⟨v.1 * w.1, subgroup_respect_mul H v.2 w.2⟩
|
||
|
||
section
|
||
local notation 1 := subgroup_one
|
||
local postfix ⁻¹ := subgroup_inv
|
||
local infix * := subgroup_mul
|
||
|
||
theorem subgroup_mul_assoc (g₁ g₂ g₃ : sg H) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
|
||
subtype_eq !mul.assoc
|
||
|
||
theorem subgroup_one_mul (g : sg H) : 1 * g = g :=
|
||
subtype_eq !one_mul
|
||
|
||
theorem subgroup_mul_one (g : sg H) : g * 1 = g :=
|
||
subtype_eq !mul_one
|
||
|
||
theorem subgroup_mul_left_inv (g : sg H) : g⁻¹ * g = 1 :=
|
||
subtype_eq !mul.left_inv
|
||
|
||
theorem subgroup_mul_comm {G : CommGroup} {H : subgroup_rel G} (g h : sg H)
|
||
: g * h = h * g :=
|
||
subtype_eq !mul.comm
|
||
|
||
end
|
||
|
||
variable (H)
|
||
definition group_sg [constructor] : group (sg H) :=
|
||
group.mk subgroup_mul _ subgroup_mul_assoc subgroup_one subgroup_one_mul subgroup_mul_one
|
||
subgroup_inv subgroup_mul_left_inv
|
||
|
||
definition subgroup [constructor] : Group :=
|
||
Group.mk _ (group_sg H)
|
||
|
||
definition comm_group_sg [constructor] {G : CommGroup} (H : subgroup_rel G)
|
||
: comm_group (sg H) :=
|
||
⦃comm_group, group_sg H, mul_comm := subgroup_mul_comm⦄
|
||
|
||
definition comm_subgroup [constructor] {G : CommGroup} (H : subgroup_rel G)
|
||
: CommGroup :=
|
||
CommGroup.mk _ (comm_group_sg H)
|
||
|
||
/- Quotient Group -/
|
||
|
||
definition quotient_rel (g h : G) : Prop := N (g * h⁻¹)
|
||
|
||
variable {N}
|
||
theorem quotient_rel_refl (g : G) : quotient_rel N g g :=
|
||
transport (λx, N x) !mul.right_inv⁻¹ (subgroup_has_one N)
|
||
theorem quotient_rel_symm (r : quotient_rel N g h) : quotient_rel N h g :=
|
||
transport (λx, N x) (!mul_inv ⬝ ap (λx, x * _) !inv_inv) (subgroup_respect_inv N r)
|
||
|
||
theorem quotient_rel_trans (r : quotient_rel N g h) (s : quotient_rel N h k)
|
||
: quotient_rel N g k :=
|
||
have H1 : N ((g * h⁻¹) * (h * k⁻¹)), from subgroup_respect_mul N r s,
|
||
have H2 : (g * h⁻¹) * (h * k⁻¹) = g * k⁻¹, from calc
|
||
(g * h⁻¹) * (h * k⁻¹) = ((g * h⁻¹) * h) * k⁻¹ : by rewrite [mul.assoc (g * h⁻¹)]
|
||
... = g * k⁻¹ : by rewrite inv_mul_cancel_right,
|
||
show N (g * k⁻¹), from H2 ▸ H1
|
||
|
||
theorem quotient_rel_resp_inv (r : quotient_rel N g h) : quotient_rel N g⁻¹ h⁻¹ :=
|
||
have H1 : N (g⁻¹ * (h * g⁻¹) * g), from
|
||
is_normal_subgroup' N g (quotient_rel_symm r),
|
||
have H2 : g⁻¹ * (h * g⁻¹) * g = g⁻¹ * h⁻¹⁻¹, from calc
|
||
g⁻¹ * (h * g⁻¹) * g = g⁻¹ * h * g⁻¹ * g : by rewrite -mul.assoc
|
||
... = g⁻¹ * h : inv_mul_cancel_right
|
||
... = g⁻¹ * h⁻¹⁻¹ : by rewrite algebra.inv_inv,
|
||
show N (g⁻¹ * h⁻¹⁻¹), from H2 ▸ H1
|
||
|
||
theorem quotient_rel_resp_mul (r : quotient_rel N g h) (r' : quotient_rel N g' h')
|
||
: quotient_rel N (g * g') (h * h') :=
|
||
have H1 : N (g * ((g' * h'⁻¹) * h⁻¹)), from
|
||
normal_subgroup_insert N r' r,
|
||
have H2 : g * ((g' * h'⁻¹) * h⁻¹) = (g * g') * (h * h')⁻¹, from calc
|
||
g * ((g' * h'⁻¹) * h⁻¹) = g * (g' * (h'⁻¹ * h⁻¹)) : by rewrite [mul.assoc]
|
||
... = (g * g') * (h'⁻¹ * h⁻¹) : mul.assoc
|
||
... = (g * g') * (h * h')⁻¹ : by rewrite [mul_inv],
|
||
show N ((g * g') * (h * h')⁻¹), from H2 ▸ H1
|
||
|
||
theorem is_equivalence_quotient_rel : is_equivalence (quotient_rel N) :=
|
||
is_equivalence.mk quotient_rel_refl
|
||
(λg h, quotient_rel_symm)
|
||
(λg h k, quotient_rel_trans)
|
||
|
||
local attribute is_equivalence_quotient_rel [instance]
|
||
variable (N)
|
||
definition qg : Type := set_quotient (quotient_rel N)
|
||
variable {N}
|
||
local attribute qg [reducible]
|
||
|
||
definition quotient_one [constructor] : qg N := class_of one
|
||
definition quotient_inv [unfold 3] : qg N → qg N :=
|
||
quotient_unary_map has_inv.inv (λg g' r, quotient_rel_resp_inv r)
|
||
definition quotient_mul [unfold 3 4] : qg N → qg N → qg N :=
|
||
quotient_binary_map has_mul.mul (λg g' r h h' r', quotient_rel_resp_mul r r')
|
||
|
||
section
|
||
local notation 1 := quotient_one
|
||
local postfix ⁻¹ := quotient_inv
|
||
local infix * := quotient_mul
|
||
|
||
theorem quotient_mul_assoc (g₁ g₂ g₃ : qg N) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
|
||
begin
|
||
refine set_quotient.rec_prop _ g₁,
|
||
refine set_quotient.rec_prop _ g₂,
|
||
refine set_quotient.rec_prop _ g₃,
|
||
clear g₁ g₂ g₃, intro g₁ g₂ g₃,
|
||
exact ap class_of !mul.assoc
|
||
end
|
||
|
||
theorem quotient_one_mul (g : qg N) : 1 * g = g :=
|
||
begin
|
||
refine set_quotient.rec_prop _ g, clear g, intro g,
|
||
exact ap class_of !one_mul
|
||
end
|
||
|
||
theorem quotient_mul_one (g : qg N) : g * 1 = g :=
|
||
begin
|
||
refine set_quotient.rec_prop _ g, clear g, intro g,
|
||
exact ap class_of !mul_one
|
||
end
|
||
|
||
theorem quotient_mul_left_inv (g : qg N) : g⁻¹ * g = 1 :=
|
||
begin
|
||
refine set_quotient.rec_prop _ g, clear g, intro g,
|
||
exact ap class_of !mul.left_inv
|
||
end
|
||
|
||
theorem quotient_mul_comm {G : CommGroup} {N : normal_subgroup_rel G} (g h : qg N)
|
||
: g * h = h * g :=
|
||
begin
|
||
refine set_quotient.rec_prop _ g, clear g, intro g,
|
||
refine set_quotient.rec_prop _ h, clear h, intro h,
|
||
apply ap class_of, esimp, apply mul.comm
|
||
end
|
||
|
||
end
|
||
|
||
variable (N)
|
||
definition group_qg [constructor] : group (qg N) :=
|
||
group.mk quotient_mul _ quotient_mul_assoc quotient_one quotient_one_mul quotient_mul_one
|
||
quotient_inv quotient_mul_left_inv
|
||
|
||
definition quotient_group [constructor] : Group :=
|
||
Group.mk _ (group_qg N)
|
||
|
||
definition comm_group_qg [constructor] {G : CommGroup} (N : normal_subgroup_rel G)
|
||
: comm_group (qg N) :=
|
||
⦃comm_group, group_qg N, mul_comm := quotient_mul_comm⦄
|
||
|
||
definition quotient_comm_group [constructor] {G : CommGroup} (N : subgroup_rel G)
|
||
: CommGroup :=
|
||
CommGroup.mk _ (comm_group_qg (normal_subgroup_rel_comm N))
|
||
|
||
/- Binary products (direct sums) of Groups -/
|
||
definition product_one [constructor] : G × G' := (one, one)
|
||
definition product_inv [unfold 3] : G × G' → G × G' :=
|
||
λv, (v.1⁻¹, v.2⁻¹)
|
||
definition product_mul [unfold 3 4] : G × G' → G × G' → G × G' :=
|
||
λv w, (v.1 * w.1, v.2 * w.2)
|
||
|
||
section
|
||
local notation 1 := product_one
|
||
local postfix ⁻¹ := product_inv
|
||
local infix * := product_mul
|
||
|
||
theorem product_mul_assoc (g₁ g₂ g₃ : G × G') : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
|
||
prod_eq !mul.assoc !mul.assoc
|
||
|
||
theorem product_one_mul (g : G × G') : 1 * g = g :=
|
||
prod_eq !one_mul !one_mul
|
||
|
||
theorem product_mul_one (g : G × G') : g * 1 = g :=
|
||
prod_eq !mul_one !mul_one
|
||
|
||
theorem product_mul_left_inv (g : G × G') : g⁻¹ * g = 1 :=
|
||
prod_eq !mul.left_inv !mul.left_inv
|
||
|
||
theorem product_mul_comm {G G' : CommGroup} (g h : G × G') : g * h = h * g :=
|
||
prod_eq !mul.comm !mul.comm
|
||
|
||
end
|
||
|
||
variables (G G')
|
||
definition group_prod [constructor] : group (G × G') :=
|
||
group.mk product_mul _ product_mul_assoc product_one product_one_mul product_mul_one
|
||
product_inv product_mul_left_inv
|
||
|
||
definition product [constructor] : Group :=
|
||
Group.mk _ (group_prod G G')
|
||
|
||
definition comm_group_prod [constructor] (G G' : CommGroup) : comm_group (G × G') :=
|
||
⦃comm_group, group_prod G G', mul_comm := product_mul_comm⦄
|
||
|
||
definition comm_product [constructor] (G G' : CommGroup) : CommGroup :=
|
||
CommGroup.mk _ (comm_group_prod G G')
|
||
|
||
infix ` ×g `:30 := group.product
|
||
|
||
/- Free Group of a set -/
|
||
variables (X : Set) {l l' : list (X ⊎ X)}
|
||
namespace free_group
|
||
|
||
inductive free_group_rel : list (X ⊎ X) → list (X ⊎ X) → Type :=
|
||
| rrefl : Πl, free_group_rel l l
|
||
| cancel1 : Πx, free_group_rel [inl x, inr x] []
|
||
| cancel2 : Πx, free_group_rel [inr x, inl x] []
|
||
| resp_append : Π{l₁ l₂ l₃ l₄}, free_group_rel l₁ l₂ → free_group_rel l₃ l₄ →
|
||
free_group_rel (l₁ ++ l₃) (l₂ ++ l₄)
|
||
| rtrans : Π{l₁ l₂ l₃}, free_group_rel l₁ l₂ → free_group_rel l₂ l₃ →
|
||
free_group_rel l₁ l₃
|
||
|
||
open free_group_rel
|
||
local abbreviation R [reducible] := free_group_rel
|
||
attribute free_group_rel.rrefl [refl]
|
||
|
||
definition free_group_carrier [reducible] : Type := set_quotient (λx y, ∥R X x y∥)
|
||
local abbreviation FG := free_group_carrier
|
||
|
||
definition is_reflexive_R : is_reflexive (λx y, ∥R X x y∥) :=
|
||
begin constructor, intro s, apply tr, unfold R end
|
||
local attribute is_reflexive_R [instance]
|
||
|
||
variable {X}
|
||
theorem rel_respect_flip (r : R X l l') : R X (map sum.flip l) (map sum.flip l') :=
|
||
begin
|
||
induction r with l x x l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂,
|
||
{ reflexivity},
|
||
{ repeat esimp [map], exact cancel2 x},
|
||
{ repeat esimp [map], exact cancel1 x},
|
||
{ rewrite [+map_append], exact resp_append IH₁ IH₂},
|
||
{ exact rtrans IH₁ IH₂}
|
||
end
|
||
|
||
theorem rel_respect_reverse (r : R X l l') : R X (reverse l) (reverse l') :=
|
||
begin
|
||
induction r with l x x l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂,
|
||
{ reflexivity},
|
||
{ repeat esimp [map], exact cancel2 x},
|
||
{ repeat esimp [map], exact cancel1 x},
|
||
{ rewrite [+reverse_append], exact resp_append IH₂ IH₁},
|
||
{ exact rtrans IH₁ IH₂}
|
||
end
|
||
|
||
definition free_group_one [constructor] : FG X := class_of []
|
||
definition free_group_inv [unfold 3] : FG X → FG X :=
|
||
quotient_unary_map (reverse ∘ map sum.flip)
|
||
(λl l', trunc_functor -1 (rel_respect_reverse ∘ rel_respect_flip))
|
||
definition free_group_mul [unfold 3 4] : FG X → FG X → FG X :=
|
||
quotient_binary_map append (λl l', trunc.elim (λr m m', trunc.elim (λs, tr (resp_append r s))))
|
||
|
||
section
|
||
local notation 1 := free_group_one
|
||
local postfix ⁻¹ := free_group_inv
|
||
local infix * := free_group_mul
|
||
|
||
theorem free_group_mul_assoc (g₁ g₂ g₃ : FG X) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
|
||
begin
|
||
refine set_quotient.rec_prop _ g₁,
|
||
refine set_quotient.rec_prop _ g₂,
|
||
refine set_quotient.rec_prop _ g₃,
|
||
clear g₁ g₂ g₃, intro g₁ g₂ g₃,
|
||
exact ap class_of !append.assoc
|
||
end
|
||
|
||
theorem free_group_one_mul (g : FG X) : 1 * g = g :=
|
||
begin
|
||
refine set_quotient.rec_prop _ g, clear g, intro g,
|
||
exact ap class_of !append_nil_left
|
||
end
|
||
|
||
theorem free_group_mul_one (g : FG X) : g * 1 = g :=
|
||
begin
|
||
refine set_quotient.rec_prop _ g, clear g, intro g,
|
||
exact ap class_of !append_nil_right
|
||
end
|
||
|
||
theorem free_group_mul_left_inv (g : FG X) : g⁻¹ * g = 1 :=
|
||
begin
|
||
refine set_quotient.rec_prop _ g, clear g, intro g,
|
||
apply eq_of_rel, apply tr,
|
||
induction g with s l IH,
|
||
{ reflexivity},
|
||
{ rewrite [▸*, map_cons, reverse_cons, concat_append],
|
||
refine rtrans _ IH,
|
||
apply resp_append, reflexivity,
|
||
change R X ([flip s, s] ++ l) ([] ++ l),
|
||
apply resp_append,
|
||
induction s, apply cancel2, apply cancel1,
|
||
reflexivity}
|
||
end
|
||
|
||
end
|
||
end free_group open free_group
|
||
-- export [reduce_hints] free_group
|
||
variables (X)
|
||
definition group_free_group [constructor] : group (free_group_carrier X) :=
|
||
group.mk free_group_mul _ free_group_mul_assoc free_group_one free_group_one_mul free_group_mul_one
|
||
free_group_inv free_group_mul_left_inv
|
||
|
||
definition free_group [constructor] : Group :=
|
||
Group.mk _ (group_free_group X)
|
||
|
||
/- The universal property of the free group -/
|
||
variables {X G}
|
||
definition free_group_inclusion [constructor] (x : X) : free_group X :=
|
||
class_of [inl x]
|
||
|
||
definition fgh_helper [unfold 5] (f : X → G) (g : G) (x : X + X) : G :=
|
||
g * sum.rec (λx, f x) (λx, (f x)⁻¹) x
|
||
|
||
theorem fgh_helper_respect_rel (f : X → G) (r : free_group_rel X l l')
|
||
: Π(g : G), foldl (fgh_helper f) g l = foldl (fgh_helper f) g l' :=
|
||
begin
|
||
induction r with l x x l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂: intro g,
|
||
{ reflexivity},
|
||
{ unfold [foldl], apply mul_inv_cancel_right},
|
||
{ unfold [foldl], apply inv_mul_cancel_right},
|
||
{ rewrite [+foldl_append, IH₁, IH₂]},
|
||
{ exact !IH₁ ⬝ !IH₂}
|
||
end
|
||
|
||
theorem fgh_helper_mul (f : X → G) (l)
|
||
: Π(g : G), foldl (fgh_helper f) g l = g * foldl (fgh_helper f) 1 l :=
|
||
begin
|
||
induction l with s l IH: intro g,
|
||
{ unfold [foldl], exact !mul_one⁻¹},
|
||
{ rewrite [+foldl_cons, IH], refine _ ⬝ (ap (λx, g * x) !IH⁻¹),
|
||
rewrite [-mul.assoc, ↑fgh_helper, one_mul]}
|
||
end
|
||
|
||
definition free_group_hom [constructor] (f : X → G) : free_group X →g G :=
|
||
begin
|
||
fapply homomorphism.mk,
|
||
{ intro g, refine set_quotient.elim _ _ g,
|
||
{ intro l, exact foldl (fgh_helper f) 1 l},
|
||
{ intro l l' r, esimp at *, refine trunc.rec _ r, clear r, intro r,
|
||
exact fgh_helper_respect_rel f r 1}},
|
||
{ refine set_quotient.rec_prop _, intro l, refine set_quotient.rec_prop _, intro l',
|
||
esimp, refine !foldl_append ⬝ _, esimp, apply fgh_helper_mul}
|
||
end
|
||
|
||
definition fn_of_free_group_hom [unfold_full] (φ : free_group X →g G) : X → G :=
|
||
φ ∘ free_group_inclusion
|
||
|
||
variables (X G)
|
||
definition free_group_hom_equiv_fn : (free_group X →g G) ≃ (X → G) :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ exact fn_of_free_group_hom},
|
||
{ exact free_group_hom},
|
||
{ intro f, apply eq_of_homotopy, intro x, esimp, unfold [foldl], apply one_mul},
|
||
{ intro φ, apply homomorphism_eq, refine set_quotient.rec_prop _, intro l, esimp,
|
||
induction l with s l IH,
|
||
{ esimp [foldl], exact (respect_one φ)⁻¹},
|
||
{ rewrite [foldl_cons, fgh_helper_mul],
|
||
refine _ ⬝ (respect_mul φ (class_of [s]) (class_of l))⁻¹,
|
||
rewrite [IH], induction s: rewrite [▸*, one_mul], rewrite [-respect_inv φ]}}
|
||
end
|
||
|
||
/- Free Commutative Group of a set -/
|
||
namespace free_comm_group
|
||
|
||
inductive fcg_rel : list (X ⊎ X) → list (X ⊎ X) → Type :=
|
||
| rrefl : Πl, fcg_rel l l
|
||
| cancel1 : Πx, fcg_rel [inl x, inr x] []
|
||
| cancel2 : Πx, fcg_rel [inr x, inl x] []
|
||
| rflip : Πx y, fcg_rel [x, y] [y, x]
|
||
| resp_append : Π{l₁ l₂ l₃ l₄}, fcg_rel l₁ l₂ → fcg_rel l₃ l₄ →
|
||
fcg_rel (l₁ ++ l₃) (l₂ ++ l₄)
|
||
| rtrans : Π{l₁ l₂ l₃}, fcg_rel l₁ l₂ → fcg_rel l₂ l₃ →
|
||
fcg_rel l₁ l₃
|
||
|
||
open fcg_rel
|
||
local abbreviation R [reducible] := fcg_rel
|
||
attribute fcg_rel.rrefl [refl]
|
||
attribute fcg_rel.rtrans [trans]
|
||
|
||
definition fcg_carrier [reducible] : Type := set_quotient (λx y, ∥R X x y∥)
|
||
local abbreviation FG := fcg_carrier
|
||
|
||
definition is_reflexive_R : is_reflexive (λx y, ∥R X x y∥) :=
|
||
begin constructor, intro s, apply tr, unfold R end
|
||
local attribute is_reflexive_R [instance]
|
||
|
||
variable {X}
|
||
theorem rel_respect_flip (r : R X l l') : R X (map sum.flip l) (map sum.flip l') :=
|
||
begin
|
||
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂,
|
||
{ reflexivity},
|
||
{ repeat esimp [map], exact cancel2 x},
|
||
{ repeat esimp [map], exact cancel1 x},
|
||
{ repeat esimp [map], apply rflip},
|
||
{ rewrite [+map_append], exact resp_append IH₁ IH₂},
|
||
{ exact rtrans IH₁ IH₂}
|
||
end
|
||
|
||
theorem rel_respect_reverse (r : R X l l') : R X (reverse l) (reverse l') :=
|
||
begin
|
||
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂,
|
||
{ reflexivity},
|
||
{ repeat esimp [map], exact cancel2 x},
|
||
{ repeat esimp [map], exact cancel1 x},
|
||
{ repeat esimp [map], apply rflip},
|
||
{ rewrite [+reverse_append], exact resp_append IH₂ IH₁},
|
||
{ exact rtrans IH₁ IH₂}
|
||
end
|
||
|
||
theorem rel_cons_concat (l s) : R X (s :: l) (concat s l) :=
|
||
begin
|
||
induction l with t l IH,
|
||
{ reflexivity},
|
||
{ rewrite [concat_cons], transitivity (t :: s :: l),
|
||
{ exact resp_append !rflip !rrefl},
|
||
{ exact resp_append (rrefl [t]) IH}}
|
||
end
|
||
|
||
definition fcg_one [constructor] : FG X := class_of []
|
||
definition fcg_inv [unfold 3] : FG X → FG X :=
|
||
quotient_unary_map (reverse ∘ map sum.flip)
|
||
(λl l', trunc_functor -1 (rel_respect_reverse ∘ rel_respect_flip))
|
||
definition fcg_mul [unfold 3 4] : FG X → FG X → FG X :=
|
||
quotient_binary_map append (λl l', trunc.elim (λr m m', trunc.elim (λs, tr (resp_append r s))))
|
||
|
||
section
|
||
local notation 1 := fcg_one
|
||
local postfix ⁻¹ := fcg_inv
|
||
local infix * := fcg_mul
|
||
|
||
theorem fcg_mul_assoc (g₁ g₂ g₃ : FG X) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
|
||
begin
|
||
refine set_quotient.rec_prop _ g₁,
|
||
refine set_quotient.rec_prop _ g₂,
|
||
refine set_quotient.rec_prop _ g₃,
|
||
clear g₁ g₂ g₃, intro g₁ g₂ g₃,
|
||
exact ap class_of !append.assoc
|
||
end
|
||
|
||
theorem fcg_one_mul (g : FG X) : 1 * g = g :=
|
||
begin
|
||
refine set_quotient.rec_prop _ g, clear g, intro g,
|
||
exact ap class_of !append_nil_left
|
||
end
|
||
|
||
theorem fcg_mul_one (g : FG X) : g * 1 = g :=
|
||
begin
|
||
refine set_quotient.rec_prop _ g, clear g, intro g,
|
||
exact ap class_of !append_nil_right
|
||
end
|
||
|
||
theorem fcg_mul_left_inv (g : FG X) : g⁻¹ * g = 1 :=
|
||
begin
|
||
refine set_quotient.rec_prop _ g, clear g, intro g,
|
||
apply eq_of_rel, apply tr,
|
||
induction g with s l IH,
|
||
{ reflexivity},
|
||
{ rewrite [▸*, map_cons, reverse_cons, concat_append],
|
||
refine rtrans _ IH,
|
||
apply resp_append, reflexivity,
|
||
change R X ([flip s, s] ++ l) ([] ++ l),
|
||
apply resp_append,
|
||
induction s, apply cancel2, apply cancel1,
|
||
reflexivity}
|
||
end
|
||
|
||
theorem fcg_mul_comm (g h : FG X) : g * h = h * g :=
|
||
begin
|
||
refine set_quotient.rec_prop _ g, clear g, intro g,
|
||
refine set_quotient.rec_prop _ h, clear h, intro h,
|
||
apply eq_of_rel, apply tr,
|
||
revert h, induction g with s l IH: intro h,
|
||
{ rewrite [append_nil_left, append_nil_right]},
|
||
{ rewrite [append_cons,-concat_append],
|
||
transitivity concat s (l ++ h), apply rel_cons_concat,
|
||
rewrite [-append_concat], apply IH}
|
||
end
|
||
end
|
||
end free_comm_group open free_comm_group
|
||
|
||
variables (X)
|
||
definition group_free_comm_group [constructor] : comm_group (fcg_carrier X) :=
|
||
comm_group.mk fcg_mul _ fcg_mul_assoc fcg_one fcg_one_mul fcg_mul_one
|
||
fcg_inv fcg_mul_left_inv fcg_mul_comm
|
||
|
||
definition free_comm_group [constructor] : CommGroup :=
|
||
CommGroup.mk _ (group_free_comm_group X)
|
||
|
||
/- The universal property of the free commutative group -/
|
||
variables {X A}
|
||
definition free_comm_group_inclusion [constructor] (x : X) : free_comm_group X :=
|
||
class_of [inl x]
|
||
|
||
theorem fgh_helper_respect_comm_rel (f : X → A) (r : fcg_rel X l l')
|
||
: Π(g : A), foldl (fgh_helper f) g l = foldl (fgh_helper f) g l' :=
|
||
begin
|
||
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂: intro g,
|
||
{ reflexivity},
|
||
{ unfold [foldl], apply mul_inv_cancel_right},
|
||
{ unfold [foldl], apply inv_mul_cancel_right},
|
||
{ unfold [foldl, fgh_helper], apply mul.right_comm},
|
||
{ rewrite [+foldl_append, IH₁, IH₂]},
|
||
{ exact !IH₁ ⬝ !IH₂}
|
||
end
|
||
|
||
definition free_comm_group_hom [constructor] (f : X → A) : free_comm_group X →g A :=
|
||
begin
|
||
fapply homomorphism.mk,
|
||
{ intro g, refine set_quotient.elim _ _ g,
|
||
{ intro l, exact foldl (fgh_helper f) 1 l},
|
||
{ intro l l' r, esimp at *, refine trunc.rec _ r, clear r, intro r,
|
||
exact fgh_helper_respect_comm_rel f r 1}},
|
||
{ refine set_quotient.rec_prop _, intro l, refine set_quotient.rec_prop _, intro l',
|
||
esimp, refine !foldl_append ⬝ _, esimp, apply fgh_helper_mul}
|
||
end
|
||
|
||
definition fn_of_free_comm_group_hom [unfold_full] (φ : free_comm_group X →g A) : X → A :=
|
||
φ ∘ free_comm_group_inclusion
|
||
|
||
variables (X A)
|
||
definition free_comm_group_hom_equiv_fn : (free_comm_group X →g A) ≃ (X → A) :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ exact fn_of_free_comm_group_hom},
|
||
{ exact free_comm_group_hom},
|
||
{ intro f, apply eq_of_homotopy, intro x, esimp, unfold [foldl], apply one_mul},
|
||
{ intro φ, apply homomorphism_eq, refine set_quotient.rec_prop _, intro l, esimp,
|
||
induction l with s l IH,
|
||
{ esimp [foldl], symmetry, exact to_respect_one φ},
|
||
{ rewrite [foldl_cons, fgh_helper_mul],
|
||
refine _ ⬝ (to_respect_mul φ (class_of [s]) (class_of l))⁻¹,
|
||
rewrite [▸*,IH], induction s: rewrite [▸*, one_mul], apply ap (λx, x * _),
|
||
exact !to_respect_inv⁻¹}}
|
||
end
|
||
|
||
/- set generating normal subgroup -/
|
||
|
||
section
|
||
|
||
parameters {GG : CommGroup} (S : GG → Prop)
|
||
|
||
inductive generating_relation' : GG → Type :=
|
||
| rincl : Π{g}, S g → generating_relation' g
|
||
| rmul : Π{g h}, generating_relation' g → generating_relation' h → generating_relation' (g * h)
|
||
| rinv : Π{g}, generating_relation' g → generating_relation' g⁻¹
|
||
| rone : generating_relation' 1
|
||
open generating_relation'
|
||
definition generating_relation (g : GG) : Prop := ∥ generating_relation' g ∥
|
||
local abbreviation R := generating_relation
|
||
definition gr_one : R 1 := tr (rone S)
|
||
definition gr_inv (g : GG) : R g → R g⁻¹ :=
|
||
trunc_functor -1 rinv
|
||
definition gr_mul (g h : GG) : R g → R h → R (g * h) :=
|
||
trunc_functor2 rmul
|
||
|
||
definition normal_generating_relation : subgroup_rel GG :=
|
||
⦃ subgroup_rel,
|
||
R := generating_relation,
|
||
Rone := gr_one,
|
||
Rinv := gr_inv,
|
||
Rmul := gr_mul⦄
|
||
|
||
parameter (GG)
|
||
definition quotient_comm_group_gen : CommGroup := quotient_comm_group normal_generating_relation
|
||
|
||
end
|
||
|
||
section
|
||
|
||
parameters {I : Set} (Y : I → CommGroup)
|
||
|
||
definition dirsum_carrier : CommGroup := free_comm_group (trunctype.mk (Σi, Y i) _)
|
||
local abbreviation ι := @free_comm_group_inclusion
|
||
inductive dirsum_rel : dirsum_carrier → Type :=
|
||
| rmk : Πi y₁ y₂, dirsum_rel (ι ⟨i, y₁⟩ * ι ⟨i, y₂⟩ * (ι ⟨i, y₁ * y₂⟩)⁻¹)
|
||
|
||
definition direct_sum : CommGroup := quotient_comm_group_gen dirsum_carrier (λg, ∥dirsum_rel g∥)
|
||
end
|
||
|
||
/- Tensor group (WIP) -/
|
||
|
||
/- namespace tensor_group
|
||
variables {A B}
|
||
local abbreviation ι := @free_comm_group_inclusion
|
||
|
||
inductive tensor_rel_type : free_comm_group (Set_of_Group A ×t Set_of_Group B) → Type :=
|
||
| mul_left : Π(a₁ a₂ : A) (b : B), tensor_rel_type (ι (a₁, b) * ι (a₂, b) * (ι (a₁ * a₂, b))⁻¹)
|
||
| mul_right : Π(a : A) (b₁ b₂ : B), tensor_rel_type (ι (a, b₁) * ι (a, b₂) * (ι (a, b₁ * b₂))⁻¹)
|
||
|
||
open tensor_rel_type
|
||
|
||
definition tensor_rel' (x : free_comm_group (Set_of_Group A ×t Set_of_Group B)) : Prop :=
|
||
∥ tensor_rel_type x ∥
|
||
|
||
definition tensor_group_rel (A B : CommGroup)
|
||
: normal_subgroup_rel (free_comm_group (Set_of_Group A ×t Set_of_Group B)) :=
|
||
sorry /- relation generated by tensor_rel'-/
|
||
|
||
definition tensor_group [constructor] : CommGroup :=
|
||
quotient_comm_group (tensor_group_rel A B)
|
||
|
||
end tensor_group-/
|
||
|
||
section kernels
|
||
|
||
variables {G₁ G₂ : Group}
|
||
|
||
-- TODO: maybe define this in more generality for pointed types?
|
||
definition kernel [constructor] (φ : G₁ →g G₂) (g : G₁) : Prop := trunctype.mk (φ g = 1) _
|
||
|
||
theorem kernel_mul (φ : G₁ →g G₂) (g h : G₁) (H₁ : kernel φ g) (H₂ : kernel φ h) : kernel φ (g *[G₁] h) :=
|
||
begin
|
||
esimp at *,
|
||
exact calc
|
||
φ (g * h) = (φ g) * (φ h) : to_respect_mul
|
||
... = 1 * (φ h) : H₁
|
||
... = 1 * 1 : H₂
|
||
... = 1 : one_mul
|
||
end
|
||
|
||
theorem kernel_inv (φ : G₁ →g G₂) (g : G₁) (H : kernel φ g) : kernel φ (g⁻¹) :=
|
||
begin
|
||
esimp at *,
|
||
exact calc
|
||
φ g⁻¹ = (φ g)⁻¹ : to_respect_inv
|
||
... = 1⁻¹ : H
|
||
... = 1 : one_inv
|
||
end
|
||
|
||
definition subgroup_kernel [constructor] (φ : G₁ →g G₂) : subgroup_rel G₁ :=
|
||
⦃ subgroup_rel,
|
||
R := kernel φ,
|
||
Rone := respect_one φ,
|
||
Rmul := kernel_mul φ,
|
||
Rinv := kernel_inv φ
|
||
⦄
|
||
|
||
theorem is_normal_subgroup_kernel (φ : G₁ →g G₂) (g : G₁) (h : G₁)
|
||
: kernel φ g → kernel φ (h * g * h⁻¹) :=
|
||
begin
|
||
esimp at *,
|
||
intro p,
|
||
exact calc
|
||
φ (h * g * h⁻¹) = (φ (h * g)) * φ (h⁻¹) : to_respect_mul
|
||
... = (φ h) * (φ g) * (φ h⁻¹) : to_respect_mul
|
||
... = (φ h) * 1 * (φ h⁻¹) : p
|
||
... = (φ h) * (φ h⁻¹) : mul_one
|
||
... = (φ h) * (φ h)⁻¹ : to_respect_inv
|
||
... = 1 : mul.right_inv
|
||
end
|
||
|
||
definition normal_subgroup_kernel [constructor] (φ : G₁ →g G₂) : normal_subgroup_rel G₁ :=
|
||
⦃ normal_subgroup_rel,
|
||
subgroup_kernel φ,
|
||
is_normal := is_normal_subgroup_kernel φ
|
||
⦄
|
||
|
||
end kernels
|
||
|
||
end group
|