Spectral/homotopy/degree.hlean
Floris van Doorn 3367c20f9d make pointed suspension and spheres the default
There is one proof in realprojective which I couldn't quite fix, so for now I left a sorry
2017-07-20 18:03:13 +01:00

136 lines
4.8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import homotopy.sphere2 ..move_to_lib
open fin eq equiv group algebra sphere.ops pointed nat int trunc is_equiv function circle
protected definition nat.eq_one_of_mul_eq_one {n : } (m : ) (q : n * m = 1) : n = 1 :=
begin
cases n with n,
{ exact empty.elim (succ_ne_zero 0 ((nat.zero_mul m)⁻¹ ⬝ q)⁻¹) },
{ cases n with n,
{ reflexivity },
{ apply empty.elim, cases m with m,
{ exact succ_ne_zero 0 q⁻¹ },
{ apply nat.lt_irrefl 1,
exact (calc
1 ≤ (m + 1)
: succ_le_succ (nat.zero_le m)
... = 1 * (m + 1)
: (nat.one_mul (m + 1))⁻¹
... < (n + 2) * (m + 1)
: nat.mul_lt_mul_of_pos_right
(succ_le_succ (succ_le_succ (nat.zero_le n))) (zero_lt_succ m)
... = 1 : q) } } }
end
definition cases_of_nat_abs_eq {z : } (n : ) (p : nat_abs z = n)
: (z = of_nat n) ⊎ (z = - of_nat n) :=
begin
cases p, apply by_cases_of_nat z,
{ intro n, apply sum.inl, reflexivity },
{ intro n, apply sum.inr, exact ap int.neg (ap of_nat (nat_abs_neg n))⁻¹ }
end
definition eq_one_or_eq_neg_one_of_mul_eq_one {n : } (m : ) (p : n * m = 1) : n = 1 ⊎ n = -1 :=
cases_of_nat_abs_eq 1
(nat.eq_one_of_mul_eq_one (nat_abs m)
((int.nat_abs_mul n m)⁻¹ ⬝ ap int.nat_abs p))
definition endomorphism_int_unbundled (f : ) [is_add_hom f] (n : ) :
f n = f 1 * n :=
begin
induction n using rec_nat_on with n IH n IH,
{ refine respect_zero f ⬝ _, exact !mul_zero⁻¹ },
{ refine respect_add f n 1 ⬝ _, rewrite IH,
rewrite [↑int.succ, left_distrib], apply ap (λx, _ + x), exact !mul_one⁻¹},
{ rewrite [neg_nat_succ], refine respect_add f (-n) (- 1) ⬝ _,
rewrite [IH, ↑int.pred, mul_sub_left_distrib], apply ap (λx, _ + x),
refine _ ⬝ ap neg !mul_one⁻¹, exact respect_neg f 1 }
end
namespace sphere
/-
TODO: define for unbased maps, define for S 0,
clear sorry s
prove stable under suspension
-/
attribute fundamental_group_of_circle fg_carrier_equiv_int [constructor]
attribute untrunc_of_is_trunc [unfold 4]
definition surf_eq_loop : @surf 1 = circle.loop := sorry
-- definition π2S2_surf : π2S2 (tr surf) = 1 :> :=
-- begin
-- unfold [π2S2, chain_complex.LES_of_homotopy_groups],
-- end
-- check (pmap.to_fun
-- (chain_complex.cc_to_fn
-- (chain_complex.LES_of_homotopy_groups
-- hopf.complex_phopf)
-- (pair 1 2))
-- (tr surf))
-- eval (pmap.to_fun
-- (chain_complex.cc_to_fn
-- (chain_complex.LES_of_homotopy_groups
-- hopf.complex_phopf)
-- (pair 1 2))
-- (tr surf))
definition πnSn_surf (n : ) : πnSn n (tr surf) = 1 :> :=
begin
cases n with n IH,
{ refine ap (πnSn _ ∘ tr) surf_eq_loop ⬝ _, apply transport_code_loop },
{ unfold [πnSn], exact sorry}
end
definition deg {n : } [H : is_succ n] (f : S n →* S n) : :=
by induction H with n; exact πnSn n (π→g[n+1] f (tr surf))
definition deg_id (n : ) [H : is_succ n] : deg (pid (S n)) = (1 : ) :=
by induction H with n;
exact ap (πnSn n) (homotopy_group_functor_pid (succ n) (S (succ n)) (tr surf)) ⬝ πnSn_surf n
definition deg_phomotopy {n : } [H : is_succ n] {f g : S n →* S n} (p : f ~* g) :
deg f = deg g :=
begin
induction H with n,
exact ap (πnSn n) (homotopy_group_functor_phomotopy (succ n) p (tr surf)),
end
definition endomorphism_int (f : g →g g) (n : ) : f n = f (1 : ) *[] n :=
@endomorphism_int_unbundled f (homomorphism.addstruct f) n
definition endomorphism_equiv_Z {X : Group} (e : X ≃g g) {one : X}
(p : e one = 1 :> ) (φ : X →g X) (x : X) : e (φ x) = e (φ one) *[] e x :=
begin
revert x, refine equiv_rect' (equiv_of_isomorphism e) _ _,
intro n,
refine endomorphism_int (e ∘g φ ∘g e⁻¹ᵍ) n ⬝ _,
refine ap011 (@mul _) _ _,
{ esimp, apply ap (e ∘ φ), refine ap e⁻¹ᵍ p⁻¹ ⬝ _,
exact to_left_inv (equiv_of_isomorphism e) one },
{ symmetry, exact to_right_inv (equiv_of_isomorphism e) n}
end
definition deg_compose {n : } [H : is_succ n] (f g : S n →* S n) :
deg (g ∘* f) = deg g *[] deg f :=
begin
induction H with n,
refine ap (πnSn n) (homotopy_group_functor_compose (succ n) g f (tr surf)) ⬝ _,
apply endomorphism_equiv_Z !πnSn !πnSn_surf (π→g[n+1] g)
end
definition deg_equiv {n : } [H : is_succ n] (f : S n ≃* S n) :
deg f = 1 ⊎ deg f = -1 :=
begin
induction H with n,
apply eq_one_or_eq_neg_one_of_mul_eq_one (deg f⁻¹ᵉ*),
refine !deg_compose⁻¹ ⬝ _,
refine deg_phomotopy (pright_inv f) ⬝ _,
apply deg_id
end
end sphere