Spectral/algebra/left_module.hlean

402 lines
15 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Nathaniel Thomas. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Nathaniel Thomas, Jeremy Avigad, Floris van Doorn
Modules prod vector spaces over a ring.
(We use "left_module," which is more precise, because "module" is a keyword.)
-/
import algebra.field ..move_to_lib
open is_trunc pointed function sigma eq algebra prod is_equiv equiv group
structure has_scalar [class] (F V : Type) :=
(smul : F → V → V)
infixl ` • `:73 := has_scalar.smul
/- modules over a ring -/
namespace left_module
structure left_module (R M : Type) [ringR : ring R] extends has_scalar R M, ab_group M renaming
mul → add mul_assoc → add_assoc one → zero one_mul → zero_add mul_one → add_zero inv → neg
mul_left_inv → add_left_inv mul_comm → add_comm :=
(smul_left_distrib : Π (r : R) (x y : M), smul r (add x y) = (add (smul r x) (smul r y)))
(smul_right_distrib : Π (r s : R) (x : M), smul (ring.add _ r s) x = (add (smul r x) (smul s x)))
(mul_smul : Π r s x, smul (mul r s) x = smul r (smul s x))
(one_smul : Π x, smul one x = x)
/- we make it a class now (and not as part of the structure) to avoid
left_module.to_ab_group to be an instance -/
attribute left_module [class]
definition add_ab_group_of_left_module [reducible] [trans_instance] (R M : Type) [K : ring R]
[H : left_module R M] : add_ab_group M :=
@left_module.to_ab_group R M K H
definition has_scalar_of_left_module [reducible] [trans_instance] (R M : Type) [K : ring R]
[H : left_module R M] : has_scalar R M :=
@left_module.to_has_scalar R M K H
section left_module
variables {R M : Type}
variable [ringR : ring R]
variable [moduleRM : left_module R M]
include ringR moduleRM
-- Note: the anonymous include does not work in the propositions below.
proposition smul_left_distrib (a : R) (u v : M) : a • (u + v) = a • u + a • v :=
!left_module.smul_left_distrib
proposition smul_right_distrib (a b : R) (u : M) : (a + b) • u = a • u + b • u :=
!left_module.smul_right_distrib
proposition mul_smul (a : R) (b : R) (u : M) : (a * b) • u = a • (b • u) :=
!left_module.mul_smul
proposition one_smul (u : M) : (1 : R) • u = u := !left_module.one_smul
proposition zero_smul (u : M) : (0 : R) • u = 0 :=
have (0 : R) • u + 0 • u = 0 • u + 0, by rewrite [-smul_right_distrib, *add_zero],
!add.left_cancel this
proposition smul_zero (a : R) : a • (0 : M) = 0 :=
have a • (0:M) + a • 0 = a • 0 + 0, by rewrite [-smul_left_distrib, *add_zero],
!add.left_cancel this
proposition neg_smul (a : R) (u : M) : (-a) • u = - (a • u) :=
eq_neg_of_add_eq_zero (by rewrite [-smul_right_distrib, add.left_inv, zero_smul])
proposition neg_one_smul (u : M) : -(1 : R) • u = -u :=
by rewrite [neg_smul, one_smul]
proposition smul_neg (a : R) (u : M) : a • (-u) = -(a • u) :=
by rewrite [-neg_one_smul, -mul_smul, mul_neg_one_eq_neg, neg_smul]
proposition smul_sub_left_distrib (a : R) (u v : M) : a • (u - v) = a • u - a • v :=
by rewrite [sub_eq_add_neg, smul_left_distrib, smul_neg]
proposition sub_smul_right_distrib (a b : R) (v : M) : (a - b) • v = a • v - b • v :=
by rewrite [sub_eq_add_neg, smul_right_distrib, neg_smul]
end left_module
/- vector spaces -/
structure vector_space [class] (F V : Type) [fieldF : field F]
extends left_module F V
/- homomorphisms -/
definition is_smul_hom [class] (R : Type) {M₁ M₂ : Type} [has_scalar R M₁] [has_scalar R M₂]
(f : M₁ → M₂) : Type :=
∀ r : R, ∀ a : M₁, f (r • a) = r • f a
definition is_prop_is_smul_hom [instance] (R : Type) {M₁ M₂ : Type} [is_set M₂]
[has_scalar R M₁] [has_scalar R M₂] (f : M₁ → M₂) : is_prop (is_smul_hom R f) :=
begin unfold is_smul_hom, apply _ end
definition respect_smul (R : Type) {M₁ M₂ : Type} [has_scalar R M₁] [has_scalar R M₂]
(f : M₁ → M₂) [H : is_smul_hom R f] :
∀ r : R, ∀ a : M₁, f (r • a) = r • f a :=
H
definition is_module_hom [class] (R : Type) {M₁ M₂ : Type}
[has_scalar R M₁] [has_scalar R M₂] [add_group M₁] [add_group M₂]
(f : M₁ → M₂) :=
is_add_hom f × is_smul_hom R f
definition is_add_hom_of_is_module_hom [instance] (R : Type) {M₁ M₂ : Type}
[has_scalar R M₁] [has_scalar R M₂] [add_group M₁] [add_group M₂]
(f : M₁ → M₂) [H : is_module_hom R f] : is_add_hom f :=
prod.pr1 H
definition is_smul_hom_of_is_module_hom [instance] {R : Type} {M₁ M₂ : Type}
[has_scalar R M₁] [has_scalar R M₂] [add_group M₁] [add_group M₂]
(f : M₁ → M₂) [H : is_module_hom R f] : is_smul_hom R f :=
prod.pr2 H
-- Why do we have to give the instance explicitly?
definition is_prop_is_module_hom [instance] (R : Type) {M₁ M₂ : Type}
[has_scalar R M₁] [has_scalar R M₂] [add_group M₁] [add_group M₂]
(f : M₁ → M₂) : is_prop (is_module_hom R f) :=
have h₁ : is_prop (is_add_hom f), from is_prop_is_add_hom f,
begin unfold is_module_hom, apply _ end
section module_hom
variables {R : Type} {M₁ M₂ M₃ : Type}
variables [has_scalar R M₁] [has_scalar R M₂] [has_scalar R M₃]
variables [add_group M₁] [add_group M₂] [add_group M₃]
variables (g : M₂ → M₃) (f : M₁ → M₂) [is_module_hom R g] [is_module_hom R f]
proposition is_module_hom_id : is_module_hom R (@id M₁) :=
pair (λ a₁ a₂, rfl) (λ r a, rfl)
proposition is_module_hom_comp : is_module_hom R (g ∘ f) :=
pair
(take a₁ a₂, begin esimp, rewrite [respect_add f, respect_add g] end)
(take r a, by esimp; rewrite [respect_smul R f, respect_smul R g])
proposition respect_smul_add_smul (a b : R) (u v : M₁) : f (a • u + b • v) = a • f u + b • f v :=
by rewrite [respect_add f, +respect_smul R f]
end module_hom
section hom_constant
variables {R : Type} {M₁ M₂ : Type}
variables [ring R] [has_scalar R M₁] [add_group M₁] [left_module R M₂]
proposition is_module_hom_constant : is_module_hom R (const M₁ (0 : M₂)) :=
(λm₁ m₂, !add_zero⁻¹, λr m, (smul_zero r)⁻¹ᵖ)
end hom_constant
structure LeftModule (R : Ring) :=
(carrier : Type) (struct : left_module R carrier)
attribute LeftModule.struct [instance]
section
local attribute LeftModule.carrier [coercion]
definition AddAbGroup_of_LeftModule [coercion] {R : Ring} (M : LeftModule R) : AddAbGroup :=
AddAbGroup.mk M (LeftModule.struct M)
end
definition LeftModule.struct2 [instance] {R : Ring} (M : LeftModule R) : left_module R M :=
LeftModule.struct M
-- definition LeftModule.struct3 [instance] {R : Ring} (M : LeftModule R) :
-- left_module R (AddAbGroup_of_LeftModule M) :=
-- _
definition pointed_LeftModule_carrier [instance] {R : Ring} (M : LeftModule R) :
pointed (LeftModule.carrier M) :=
pointed.mk zero
definition pSet_of_LeftModule {R : Ring} (M : LeftModule R) : Set* :=
pSet.mk' (LeftModule.carrier M)
definition left_module_AddAbGroup_of_LeftModule [instance] {R : Ring} (M : LeftModule R) :
left_module R (AddAbGroup_of_LeftModule M) :=
LeftModule.struct M
definition left_module_of_ab_group (G : Type) [gG : add_ab_group G] (R : Type) [ring R]
(smul : R → G → G)
(h1 : Π (r : R) (x y : G), smul r (x + y) = (smul r x + smul r y))
(h2 : Π (r s : R) (x : G), smul (r + s) x = (smul r x + smul s x))
(h3 : Π r s x, smul (r * s) x = smul r (smul s x))
(h4 : Π x, smul 1 x = x) : left_module R G :=
begin
cases gG with Gs Gm Gh1 G1 Gh2 Gh3 Gi Gh4 Gh5,
exact left_module.mk smul Gs Gm Gh1 G1 Gh2 Gh3 Gi Gh4 Gh5 h1 h2 h3 h4
end
definition LeftModule_of_AddAbGroup {R : Ring} (G : AddAbGroup) (smul : R → G → G)
(h1 h2 h3 h4) : LeftModule R :=
LeftModule.mk G (left_module_of_ab_group G R smul h1 h2 h3 h4)
section
variables {R : Ring} {M M₁ M₂ M₃ : LeftModule R}
definition smul_homomorphism [constructor] (M : LeftModule R) (r : R) : M →a M :=
add_homomorphism.mk (λg, r • g) (smul_left_distrib r)
proposition to_smul_left_distrib (a : R) (u v : M) : a • (u + v) = a • u + a • v :=
!smul_left_distrib
proposition to_smul_right_distrib (a b : R) (u : M) : (a + b) • u = a • u + b • u :=
!smul_right_distrib
proposition to_mul_smul (a : R) (b : R) (u : M) : (a * b) • u = a • (b • u) :=
!mul_smul
proposition to_one_smul (u : M) : (1 : R) • u = u := !one_smul
structure homomorphism (M₁ M₂ : LeftModule R) : Type :=
(fn : LeftModule.carrier M₁ → LeftModule.carrier M₂)
(p : is_module_hom R fn)
infix ` →lm `:55 := homomorphism
definition homomorphism_fn [unfold 4] [coercion] := @homomorphism.fn
definition is_module_hom_of_homomorphism [unfold 4] [instance] [priority 900]
{M₁ M₂ : LeftModule R} (φ : M₁ →lm M₂) : is_module_hom R φ :=
homomorphism.p φ
section
variable (φ : M₁ →lm M₂)
definition to_respect_add (x y : M₁) : φ (x + y) = φ x + φ y :=
respect_add φ x y
definition to_respect_smul (a : R) (x : M₁) : φ (a • x) = a • (φ x) :=
respect_smul R φ a x
definition is_embedding_of_homomorphism /- φ -/ (H : Π{x}, φ x = 0 → x = 0) : is_embedding φ :=
is_embedding_of_is_add_hom φ @H
variables (M₁ M₂)
definition is_set_homomorphism [instance] : is_set (M₁ →lm M₂) :=
begin
have H : M₁ →lm M₂ ≃ Σ(f : LeftModule.carrier M₁ → LeftModule.carrier M₂),
is_module_hom (Ring.carrier R) f,
begin
fapply equiv.MK,
{ intro φ, induction φ, constructor, exact p},
{ intro v, induction v with f H, constructor, exact H},
{ intro v, induction v, reflexivity},
{ intro φ, induction φ, reflexivity}
end,
have ∀ f : LeftModule.carrier M₁ → LeftModule.carrier M₂,
is_set (is_module_hom (Ring.carrier R) f), from _,
apply is_trunc_equiv_closed_rev, exact H
end
variables {M₁ M₂}
definition pmap_of_homomorphism [constructor] /- φ -/ :
pSet_of_LeftModule M₁ →* pSet_of_LeftModule M₂ :=
have H : φ 0 = 0, from respect_zero φ,
pmap.mk φ begin esimp, exact H end
definition homomorphism_change_fun [constructor]
(φ : M₁ →lm M₂) (f : M₁ → M₂) (p : φ ~ f) : M₁ →lm M₂ :=
homomorphism.mk f
(prod.mk
(λx₁ x₂, (p (x₁ + x₂))⁻¹ ⬝ to_respect_add φ x₁ x₂ ⬝ ap011 _ (p x₁) (p x₂))
(λ a x, (p (a • x))⁻¹ ⬝ to_respect_smul φ a x ⬝ ap01 _ (p x)))
definition homomorphism_eq (φ₁ φ₂ : M₁ →lm M₂) (p : φ₁ ~ φ₂) : φ₁ = φ₂ :=
begin
induction φ₁ with φ₁ q₁, induction φ₂ with φ₂ q₂, esimp at p, induction p,
exact ap (homomorphism.mk φ₂) !is_prop.elim
end
end
section
definition homomorphism.mk' [constructor] (φ : M₁ → M₂)
(p : Π(g₁ g₂ : M₁), φ (g₁ + g₂) = φ g₁ + φ g₂)
(q : Π(r : R) x, φ (r • x) = r • φ x) : M₁ →lm M₂ :=
homomorphism.mk φ (p, q)
definition to_respect_zero (φ : M₁ →lm M₂) : φ 0 = 0 :=
respect_zero φ
definition homomorphism_compose [constructor] (f' : M₂ →lm M₃) (f : M₁ →lm M₂) : M₁ →lm M₃ :=
homomorphism.mk (f' ∘ f) !is_module_hom_comp
variable (M)
definition homomorphism_id [constructor] [refl] : M →lm M :=
homomorphism.mk (@id M) !is_module_hom_id
variable {M}
abbreviation lmid [constructor] := homomorphism_id M
infixr ` ∘lm `:75 := homomorphism_compose
definition lm_constant [constructor] (M₁ M₂ : LeftModule R) : M₁ →lm M₂ :=
homomorphism.mk (const M₁ 0) !is_module_hom_constant
structure isomorphism (M₁ M₂ : LeftModule R) :=
(to_hom : M₁ →lm M₂)
(is_equiv_to_hom : is_equiv to_hom)
infix ` ≃lm `:25 := isomorphism
attribute isomorphism.to_hom [coercion]
attribute isomorphism.is_equiv_to_hom [instance]
attribute isomorphism._trans_of_to_hom [unfold 4]
definition equiv_of_isomorphism [constructor] (φ : M₁ ≃lm M₂) : M₁ ≃ M₂ :=
equiv.mk φ !isomorphism.is_equiv_to_hom
section
local attribute pSet_of_LeftModule [coercion]
definition pequiv_of_isomorphism [constructor] (φ : M₁ ≃lm M₂) : M₁ ≃* M₂ :=
pequiv_of_equiv (equiv_of_isomorphism φ) (to_respect_zero φ)
end
definition isomorphism_of_equiv [constructor] (φ : M₁ ≃ M₂)
(p : Π(g₁ g₂ : M₁), φ (g₁ + g₂) = φ g₁ + φ g₂)
(q : Πr x, φ (r • x) = r • φ x) : M₁ ≃lm M₂ :=
isomorphism.mk (homomorphism.mk φ (p, q)) !to_is_equiv
definition isomorphism_of_eq [constructor] {M₁ M₂ : LeftModule R} (p : M₁ = M₂ :> LeftModule R)
: M₁ ≃lm M₂ :=
isomorphism_of_equiv (equiv_of_eq (ap LeftModule.carrier p))
begin intros, induction p, reflexivity end
begin intros, induction p, reflexivity end
-- definition pequiv_of_isomorphism_of_eq {M₁ M₂ : LeftModule R} (p : M₁ = M₂ :> LeftModule R) :
-- pequiv_of_isomorphism (isomorphism_of_eq p) = pequiv_of_eq (ap pType_of_LeftModule p) :=
-- begin
-- induction p,
-- apply pequiv_eq,
-- fapply pmap_eq,
-- { intro g, reflexivity},
-- { apply is_prop.elim}
-- end
definition to_lminv [constructor] (φ : M₁ ≃lm M₂) : M₂ →lm M₁ :=
homomorphism.mk φ⁻¹
abstract begin
split,
intro g₁ g₂, apply eq_of_fn_eq_fn' φ,
rewrite [respect_add φ, +right_inv φ],
intro r x, apply eq_of_fn_eq_fn' φ,
rewrite [to_respect_smul φ, +right_inv φ],
end end
variable (M)
definition isomorphism.refl [refl] [constructor] : M ≃lm M :=
isomorphism.mk lmid !is_equiv_id
variable {M}
definition isomorphism.rfl [refl] [constructor] : M ≃lm M := isomorphism.refl M
definition isomorphism.symm [symm] [constructor] (φ : M₁ ≃lm M₂) : M₂ ≃lm M₁ :=
isomorphism.mk (to_lminv φ) !is_equiv_inv
definition isomorphism.trans [trans] [constructor] (φ : M₁ ≃lm M₂) (ψ : M₂ ≃lm M₃) : M₁ ≃lm M₃ :=
isomorphism.mk (ψ ∘lm φ) !is_equiv_compose
definition isomorphism.eq_trans [trans] [constructor]
{M₁ M₂ : LeftModule R} {M₃ : LeftModule R} (φ : M₁ = M₂) (ψ : M₂ ≃lm M₃) : M₁ ≃lm M₃ :=
proof isomorphism.trans (isomorphism_of_eq φ) ψ qed
definition isomorphism.trans_eq [trans] [constructor]
{M₁ : LeftModule R} {M₂ M₃ : LeftModule R} (φ : M₁ ≃lm M₂) (ψ : M₂ = M₃) : M₁ ≃lm M₃ :=
isomorphism.trans φ (isomorphism_of_eq ψ)
postfix `⁻¹ˡᵐ`:(max + 1) := isomorphism.symm
infixl ` ⬝lm `:75 := isomorphism.trans
infixl ` ⬝lmp `:75 := isomorphism.trans_eq
infixl ` ⬝plm `:75 := isomorphism.eq_trans
definition homomorphism_of_eq [constructor] {M₁ M₂ : LeftModule R} (p : M₁ = M₂ :> LeftModule R)
: M₁ →lm M₂ :=
isomorphism_of_eq p
definition group_homomorphism_of_lm_homomorphism [constructor] {M₁ M₂ : LeftModule R}
(φ : M₁ →lm M₂) : M₁ →a M₂ :=
add_homomorphism.mk φ (to_respect_add φ)
definition lm_homomorphism_of_group_homomorphism [constructor] {M₁ M₂ : LeftModule R}
(φ : M₁ →a M₂) (h : Π(r : R) g, φ (r • g) = r • φ g) : M₁ →lm M₂ :=
homomorphism.mk' φ (group.to_respect_add φ) h
section
local attribute pSet_of_LeftModule [coercion]
definition is_exact_mod (f : M₁ →lm M₂) (f' : M₂ →lm M₃) : Type :=
@is_exact M₁ M₂ M₃ (homomorphism_fn f) (homomorphism_fn f')
end
end
end
end left_module