Spectral/algebra/group_constructions.hlean

40 lines
1.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Egbert Rijke
Constructions with groups
-/
import .free_commutative_group
open eq algebra is_trunc sigma sigma.ops prod trunc function equiv
namespace group
variables {G G' : Group} {g g' h h' k : G} {A B : AbGroup}
/- Tensor group (WIP) -/
/- namespace tensor_group
variables {A B}
local abbreviation ι := @free_ab_group_inclusion
inductive tensor_rel_type : free_ab_group (Set_of_Group A ×t Set_of_Group B) → Type :=
| mul_left : Π(a₁ a₂ : A) (b : B), tensor_rel_type (ι (a₁, b) * ι (a₂, b) * (ι (a₁ * a₂, b))⁻¹)
| mul_right : Π(a : A) (b₁ b₂ : B), tensor_rel_type (ι (a, b₁) * ι (a, b₂) * (ι (a, b₁ * b₂))⁻¹)
open tensor_rel_type
definition tensor_rel' (x : free_ab_group (Set_of_Group A ×t Set_of_Group B)) : Prop :=
∥ tensor_rel_type x ∥
definition tensor_group_rel (A B : AbGroup)
: normal_subgroup_rel (free_ab_group (Set_of_Group A ×t Set_of_Group B)) :=
sorry /- relation generated by tensor_rel'-/
definition tensor_group [constructor] : AbGroup :=
quotient_ab_group (tensor_group_rel A B)
end tensor_group-/
end group