78 lines
3.2 KiB
Text
78 lines
3.2 KiB
Text
import types.trunc types.sum types.lift types.unit
|
||
|
||
open pi prod sum unit bool trunc is_trunc is_equiv eq equiv lift pointed
|
||
|
||
namespace choice
|
||
|
||
-- the following brilliant name is from Agda
|
||
definition unchoose [unfold 4] (n : ℕ₋₂) {X : Type} (A : X → Type) : trunc n (Πx, A x) → Πx, trunc n (A x) :=
|
||
trunc.elim (λf x, tr (f x))
|
||
|
||
definition has_choice.{u} [class] (n : ℕ₋₂) (X : Type.{u}) : Type.{u+1} :=
|
||
Π(A : X → Type.{u}), is_equiv (unchoose n A)
|
||
|
||
definition choice_equiv.{u} [constructor] {n : ℕ₋₂} {X : Type.{u}} [H : has_choice n X] (A : X → Type.{u})
|
||
: trunc n (Πx, A x) ≃ (Πx, trunc n (A x)) :=
|
||
equiv.mk _ (H A)
|
||
|
||
definition has_choice_of_succ (X : Type) (H : Πk, has_choice (k.+1) X) (n : ℕ₋₂) : has_choice n X :=
|
||
begin
|
||
cases n with n,
|
||
{ intro A, apply is_equiv_of_is_contr },
|
||
{ exact H n }
|
||
end
|
||
|
||
definition has_choice_empty [instance] (n : ℕ₋₂) : has_choice n empty :=
|
||
begin
|
||
intro A, fapply adjointify,
|
||
{ intro f, apply tr, intro x, induction x },
|
||
{ intro f, apply eq_of_homotopy, intro x, induction x },
|
||
{ intro g, induction g with g, apply ap tr, apply eq_of_homotopy, intro x, induction x }
|
||
end
|
||
|
||
definition has_choice_unit [instance] : Πn, has_choice n unit :=
|
||
begin
|
||
intro n A, fapply adjointify,
|
||
{ intro f, induction f ⋆ with a, apply tr, intro u, induction u, exact a },
|
||
{ intro f, apply eq_of_homotopy, intro u, induction u, esimp, generalize f ⋆, intro a,
|
||
induction a, reflexivity },
|
||
{ intro g, induction g with g, apply ap tr, apply eq_of_homotopy,
|
||
intro u, induction u, reflexivity }
|
||
end
|
||
|
||
definition has_choice_sum.{u} [instance] (n : ℕ₋₂) (A B : Type.{u})
|
||
[has_choice n A] [has_choice n B] : has_choice n (A ⊎ B) :=
|
||
begin
|
||
intro P, fapply is_equiv_of_equiv_of_homotopy,
|
||
{ exact calc
|
||
trunc n (Πx, P x) ≃ trunc n ((Πa, P (inl a)) × Πb, P (inr b))
|
||
: trunc_equiv_trunc n !equiv_sum_rec⁻¹ᵉ
|
||
... ≃ trunc n (Πa, P (inl a)) × trunc n (Πb, P (inr b)) : trunc_prod_equiv
|
||
... ≃ (Πa, trunc n (P (inl a))) × Πb, trunc n (P (inr b))
|
||
: by exact prod_equiv_prod (choice_equiv _) (choice_equiv _)
|
||
... ≃ Πx, trunc n (P x) : equiv_sum_rec },
|
||
{ intro f, induction f, apply eq_of_homotopy, intro x, esimp, induction x with a b: reflexivity }
|
||
end
|
||
|
||
/- currently we prove it using univalence -/
|
||
definition has_choice_equiv_closed.{u} (n : ℕ₋₂) {A B : Type.{u}} (f : A ≃ B) (hA : has_choice n B)
|
||
: has_choice n A :=
|
||
begin
|
||
induction f using rec_on_ua_idp, assumption
|
||
end
|
||
|
||
definition has_choice_bool [instance] (n : ℕ₋₂) : has_choice n bool :=
|
||
has_choice_equiv_closed n bool_equiv_unit_sum_unit _
|
||
|
||
definition has_choice_lift [instance] (n : ℕ₋₂) (A : Type) [has_choice n A] :
|
||
has_choice n (lift A) :=
|
||
has_choice_equiv_closed n !equiv_lift⁻¹ᵉ _
|
||
|
||
definition has_choice_punit [instance] (n : ℕ₋₂) : has_choice n punit := has_choice_unit n
|
||
definition has_choice_pbool [instance] (n : ℕ₋₂) : has_choice n pbool := has_choice_bool n
|
||
definition has_choice_plift [instance] (n : ℕ₋₂) (A : Type*) [has_choice n A]
|
||
: has_choice n (plift A) := has_choice_lift n A
|
||
definition has_choice_psum [instance] (n : ℕ₋₂) (A B : Type*) [has_choice n A] [has_choice n B]
|
||
: has_choice n (psum A B) := has_choice_sum n A B
|
||
|
||
end choice
|