Spectral/cohomology/gysin.hlean
2018-11-12 13:02:20 -05:00

39 lines
1.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/- the construction of the Gysin sequence using the Serre spectral sequence -/
-- author: Floris van Doorn
import .serre
open eq pointed is_trunc is_conn is_equiv equiv sphere fiber chain_complex left_module spectrum nat
prod nat int algebra
namespace cohomology
definition gysin_sequence' {E B : Type*} (n : ) (HB : is_conn 1 B) (f : E →* B)
(e : pfiber f ≃* sphere (n+1)) (A : AbGroup) : chain_complex +3 :=
let c := serre_spectral_sequence_map_of_is_conn pt f (EM_spectrum A) 0 (is_strunc_EM_spectrum A) HB
in
left_module.LES_of_SESs _ _ _ (λm, convergent_spectral_sequence.d c n (m, n))
begin
intro m,
fapply short_exact_mod_isomorphism,
rotate 3,
{ fapply short_exact_mod_of_is_contr_submodules
(spectral_sequence.convergence_0 c (n + m) (λm, neg_zero)),
{ exact zero_lt_succ n },
{ intro k Hk0 Hkn, apply spectral_sequence.is_contr_E,
apply is_contr_ordinary_cohomology,
refine is_contr_equiv_closed_rev _
(unreduced_ordinary_cohomology_sphere_of_neq_nat A Hkn Hk0),
apply group.equiv_of_isomorphism, apply unreduced_ordinary_cohomology_isomorphism,
exact e⁻¹ᵉ* }},
end
-- (λm, short_exact_mod_isomorphism
-- _
-- isomorphism.rfl
-- _
-- (short_exact_mod_of_is_contr_submodules
-- (convergent_spectral_sequence.HDinf X _)
-- (zero_lt_succ n)
-- _))
end cohomology