Spectral/pyoneda.hlean
2018-09-10 18:04:28 +02:00

111 lines
5.1 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
In this file we give a consequence of the Yoneda lemma for pointed types which we can state
internally. If we have a pointed equivalence α : A ≃* B, we can turn it into an equivalence
γ : (B →* X) ≃* (A →* X), natural in X. Naturality means that if we have f : X → X' then we
can fill the following square (using a pointed homotopy)
(B →* X) --> (A →* X)
| |
v v
(B →* X') --> (B →* X')
such that if f is the constant map, then this square is equal to the canonical filler of that
square (where the fact that f is constant is used).
Conversely, if we have such a γ natural in X, we can obtain an equivalence A ≃* B.
Moreover, these operations are equivalences in the sense that going from α to γ to α is the
same as doing nothing, and going from γ to α to γ is the same as doing nothing. However, we
need higher coherences for γ to show that the proof of naturality is the same, which we didn't do.
Author: Floris van Doorn (informal proofs in collaboration with Stefano Piceghello)
-/
import .pointed
open equiv is_equiv eq
namespace pointed
universe variable u
definition ppcompose_right_ppcompose_left {A A' B B' : Type*} (f : A →* A') (g : B →* B'):
psquare (ppcompose_right f) (ppcompose_right f) (ppcompose_left g) (ppcompose_left g) :=
ptranspose !ppcompose_left_ppcompose_right
-- definition pyoneda₂ {A B : pType.{u}} (γ : Π(X : pType.{u}), ppmap B X ≃* ppmap A X)
-- (p : Π(X X' : Type*), _ ∘* pppcompose B X X' ~* (_ : ppmap _ _))
-- : A ≃* B :=
-- begin
-- fapply pequiv.MK,
-- { exact γ B (pid B) },
-- { exact (γ A)⁻¹ᵉ* (pid A) },
-- { refine phomotopy_of_eq (p _ _) ⬝* _,
-- exact pap (γ A) !pcompose_pid ⬝* phomotopy_of_eq (to_right_inv (γ A) _) },
-- { refine phomotopy_of_eq ((p _)⁻¹ʰ* _) ⬝* _,
-- exact pap (γ B)⁻¹ᵉ* !pcompose_pid ⬝* phomotopy_of_eq (to_left_inv (γ B) _) }
-- end
-- print ⁻¹ʰᵗʸʰ
-- print eq.hhinverse
definition pyoneda_weak {A B : pType.{u}} (γ : Π(X : pType.{u}), ppmap B X ≃* ppmap A X)
(p : Π⦃X X' : Type*⦄ (f : X →* X') (g : B →* X), f ∘* γ X g ~* γ X' (f ∘* g)) : A ≃* B :=
begin
fapply pequiv.MK,
{ exact γ B (pid B) },
{ exact (γ A)⁻¹ᵉ* (pid A) },
{ refine p _ _ ⬝* _,
exact pap (γ A) !pcompose_pid ⬝* phomotopy_of_eq (to_right_inv (γ A) _) },
{ -- refine (p _)⁻¹ʰᵗʸʰ _ ⬝* _,
-- exact pap (γ B)⁻¹ᵉ* !pcompose_pid ⬝* phomotopy_of_eq (to_left_inv (γ B) _)
exact sorry
}
end
definition pyoneda {A B : pType.{u}} (γ : Π(X : pType.{u}), ppmap B X ≃* ppmap A X)
(p : Π⦃X X' : Type*⦄ (f : X →* X'), psquare (γ X) (γ X') (ppcompose_left f) (ppcompose_left f))
: A ≃* B :=
-- pyoneda_weak γ p
begin
fapply pequiv.MK,
{ exact γ B (pid B) },
{ exact (γ A)⁻¹ᵉ* (pid A) },
{ refine phomotopy_of_eq (p _ _) ⬝* _,
exact pap (γ A) !pcompose_pid ⬝* phomotopy_of_eq (to_right_inv (γ A) _) },
{ refine phomotopy_of_eq ((p _)⁻¹ʰ* _) ⬝* _,
exact pap (γ B)⁻¹ᵉ* !pcompose_pid ⬝* phomotopy_of_eq (to_left_inv (γ B) _) }
end
definition pyoneda_right_inv {A B : pType.{u}} (α : A ≃* B) :
pyoneda (λX, ppmap_pequiv_ppmap_left α) (λX X' f, proof !ppcompose_right_ppcompose_left qed) ~*
α :=
phomotopy.mk homotopy.rfl idp
definition pyoneda_left_inv {A B : pType.{u}} (γ : Π(X : pType.{u}), ppmap B X ≃* ppmap A X)
(p : Π⦃X X' : Type*⦄ (f : X →* X'), psquare (γ X) (γ X') (ppcompose_left f) (ppcompose_left f))
(H : Π⦃X⦄ (X' : Type*) (g : B →* X), phomotopy_of_eq (p (pconst X X') g) =
!pconst_pcompose ⬝* (pap (γ X') !pconst_pcompose ⬝* phomotopy_of_eq (respect_pt (γ X')))⁻¹*)
(X : Type*) : ppcompose_right (pyoneda γ p) ~* γ X :=
begin
fapply phomotopy_mk_ppmap,
{ intro f, refine phomotopy_of_eq (p _ _) ⬝* _, exact pap (γ X) !pcompose_pid },
{ refine _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹,
refine !trans_assoc ⬝ _,
refine H X (pid B) ◾** idp ⬝ !trans_assoc ⬝ idp ◾** _ ⬝ !trans_refl,
apply trans_left_inv }
end
definition pyoneda_weak_left_inv {A B : pType.{u}} (γ : Π(X : pType.{u}), ppmap B X ≃* ppmap A X)
(p : Π⦃X : Type*⦄ (X' : Type*) (g : B →* X), ppcompose_right (γ X g) ~* γ X' ∘* ppcompose_right g)
(X : Type*) : ppcompose_right (pyoneda_weak γ (λX X' f g, phomotopy_of_eq (p X' g f))) ~* γ X :=
begin
fapply phomotopy_mk_ppmap,
{ intro f, refine phomotopy_of_eq (p _ _ _) ⬝* _, exact pap (γ X) !pcompose_pid },
{ refine _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹,
refine !trans_assoc ⬝ _,
refine (ap phomotopy_of_eq (eq_con_inv_of_con_eq (to_homotopy_pt (p X (pid B)))) ⬝
!phomotopy_of_eq_con ⬝ !phomotopy_of_eq_of_phomotopy ◾**
(!phomotopy_of_eq_inv ⬝ (!phomotopy_of_eq_con ⬝ (!phomotopy_of_eq_ap ⬝
ap (pap' _) !phomotopy_of_eq_of_phomotopy) ◾** idp)⁻²**)) ◾** idp ⬝ _,
refine !trans_assoc ⬝ idp ◾** _ ⬝ !trans_refl,
apply trans_left_inv }
end
end pointed