Spectral/homotopy/LES_applications.hlean
2016-03-02 22:14:32 -05:00

133 lines
5.5 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import .LES_of_homotopy_groups homotopy.connectedness homotopy.homotopy_group
open eq is_trunc pointed homotopy is_equiv fiber equiv trunc nat chain_complex prod fin algebra
group equiv.ops trunc_index function
namespace nat
open sigma sum
definition eq_even_or_eq_odd (n : ) : (Σk, 2 * k = n) ⊎ (Σk, 2 * k + 1 = n) :=
begin
induction n with n IH,
{ exact inl ⟨0, idp⟩},
{ induction IH with H H: induction H with k p: induction p,
{ exact inr ⟨k, idp⟩},
{ refine inl ⟨k+1, idp⟩}}
end
definition rec_on_even_odd {P : → Type} (n : ) (H : Πk, P (2 * k)) (H2 : Πk, P (2 * k + 1))
: P n :=
begin
cases eq_even_or_eq_odd n with v v: induction v with k p: induction p,
{ exact H k},
{ exact H2 k}
end
end nat
open nat
namespace is_conn
theorem is_contr_HG_fiber_of_is_connected {A B : Type*} (k n : ) (f : A →* B)
[H : is_conn_map n f] (H2 : k ≤ n) : is_contr (π[k] (pfiber f)) :=
@(trivial_homotopy_group_of_is_conn (pfiber f) H2) (H pt)
-- TODO: use this for trivial_homotopy_group_of_is_conn (in homotopy.homotopy_group)
theorem is_conn_of_le (A : Type) {n k : ℕ₋₂} (H : n ≤ k) [is_conn k A] : is_conn n A :=
begin
apply is_contr_equiv_closed,
apply trunc_trunc_equiv_left _ n k H
end
definition zero_le_of_nat (n : ) : 0 ≤[ℕ₋₂] n :=
of_nat_le_of_nat (zero_le n)
local attribute is_conn_map [reducible] --TODO
theorem is_conn_map_of_le {A B : Type} (f : A → B) {n k : ℕ₋₂} (H : n ≤ k)
[is_conn_map k f] : is_conn_map n f :=
λb, is_conn_of_le _ H
definition is_surjective_trunc_functor {A B : Type} (n : ℕ₋₂) (f : A → B) [H : is_surjective f]
: is_surjective (trunc_functor n f) :=
begin
cases n with n: intro b,
{ exact tr (fiber.mk !center !is_prop.elim)},
{ refine @trunc.rec _ _ _ _ _ b, {intro x, exact is_trunc_of_le _ !minus_one_le_succ},
clear b, intro b, induction H b with v, induction v with a p,
exact tr (fiber.mk (tr a) (ap tr p))}
end
definition is_surjective_cancel_right {A B C : Type} (g : B → C) (f : A → B)
[H : is_surjective (g ∘ f)] : is_surjective g :=
begin
intro c,
induction H c with v, induction v with a p,
exact tr (fiber.mk (f a) p)
end
-- Lemma 7.5.14
theorem is_equiv_trunc_functor_of_is_conn_map {A B : Type} (n : ℕ₋₂) (f : A → B)
[H : is_conn_map n f] : is_equiv (trunc_functor n f) :=
begin
exact sorry
end
definition is_equiv_tinverse [constructor] (A : Type*) : is_equiv (@tinverse A) :=
by apply @is_equiv_trunc_functor; apply is_equiv_eq_inverse
local attribute comm_group.to_group [coercion]
local attribute is_equiv_tinverse [instance]
theorem is_equiv_π_of_is_connected.{u} {A B : pType.{u}} (n k : ) (f : A →* B)
[H : is_conn_map n f] (H2 : k ≤ n) : is_equiv (π→[k] f) :=
begin
induction k using rec_on_even_odd with k: cases k with k,
{ /- k = 0 -/
change (is_equiv (trunc_functor 0 f)), apply is_equiv_trunc_functor_of_is_conn_map,
refine is_conn_map_of_le f (zero_le_of_nat n)},
{ /- k > 0 even -/
have H2' : 2 * k + 1 ≤ n, from le.trans !self_le_succ H2,
exact
@is_equiv_of_trivial _
(LES_of_homotopy_groups3 f) _
(is_exact_LES_of_homotopy_groups3 f (k, 5))
(is_exact_LES_of_homotopy_groups3 f (succ k, 0))
(@is_contr_HG_fiber_of_is_connected A B (2 * k + 1) n f H H2')
(@is_contr_HG_fiber_of_is_connected A B (2 * succ k) n f H H2)
(@pgroup_of_group _ (comm_group_LES_of_homotopy_groups3 f k 0) idp)
(@pgroup_of_group _ (comm_group_LES_of_homotopy_groups3 f k 1) idp)
(homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun3 f (k, 0)))},
{ /- k = 1 -/
exact sorry},
{ /- k > 1 odd -/
have H2' : 2 * succ k ≤ n, from le.trans !self_le_succ H2,
have H3 : is_equiv (π→*[2*(succ k) + 1] f ∘* tinverse), from
@is_equiv_of_trivial _
(LES_of_homotopy_groups3 f) _
(is_exact_LES_of_homotopy_groups3 f (succ k, 2))
(is_exact_LES_of_homotopy_groups3 f (succ k, 3))
(@is_contr_HG_fiber_of_is_connected A B (2 * succ k) n f H H2')
(@is_contr_HG_fiber_of_is_connected A B (2 * succ k + 1) n f H H2)
(@pgroup_of_group _ (comm_group_LES_of_homotopy_groups3 f k 3) idp)
(@pgroup_of_group _ (comm_group_LES_of_homotopy_groups3 f k 4) idp)
(homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun3 f (k, 3))),
exact @(is_equiv.cancel_right tinverse) !is_equiv_tinverse
(pmap.to_fun (π→*[2*(succ k) + 1] f)) H3}
end
theorem is_surjective_π_of_is_connected.{u} {A B : pType.{u}} (n : ) (f : A →* B)
[H : is_conn_map n f] : is_surjective (π→[n + 1] f) :=
begin
induction n using rec_on_even_odd with n,
{ cases n with n,
{ exact sorry},
{ have H3 : is_surjective (π→*[2*(succ n) + 1] f ∘* tinverse), from
@is_surjective_of_trivial _
(LES_of_homotopy_groups3 f) _
(is_exact_LES_of_homotopy_groups3 f (succ n, 2))
(@is_contr_HG_fiber_of_is_connected A B (2 * succ n) (2 * succ n) f H !le.refl),
exact @(is_surjective_cancel_right (pmap.to_fun (π→*[2*(succ n) + 1] f)) tinverse) H3}},
{ exact @is_surjective_of_trivial _
(LES_of_homotopy_groups3 f) _
(is_exact_LES_of_homotopy_groups3 f (k, 5))
(@is_contr_HG_fiber_of_is_connected A B (2 * k + 1) (2 * k + 1) f H !le.refl)}
end
end is_conn