Spectral/homotopy/LES_of_homotopy_groups.hlean
2016-03-02 22:14:32 -05:00

990 lines
40 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
We define the fiber sequence of a pointed map f : X →* Y. We follow the proof in section 8.4 of
the book closely. First we define a sequence fiber_sequence as in Definition 8.4.3.
It has types X(n) : Type*
X(0) := Y,
X(1) := X,
X(n+1) := pfiber (f(n))
with functions f(n) : X(n+1) →* X(n)
f(0) := f
f(n+1) := ppoint f(n)
We prove that this is an exact sequence.
Then we prove Lemma 8.4.3, by showing that X(n+3) ≃* Ω(X(n)) and that this equivalence sends
the map f(n+3) to -Ω(f(n)), i.e. the composition of Ω(f(n)) with path inversion.
This is the hardest part of this formalization, because we need to show that they are the same
as pointed maps (we define a pointed homotopy between them).
Using this equivalence we get a boundary_map : Ω(Y) → pfiber f and we can define a new
fiber sequence X'(n) : Type*
X'(0) := Y,
X'(1) := X,
X'(2) := pfiber f
X'(n+3) := Ω(X'(n))
and maps f'(n) : X'(n+1) →* X'(n)
f'(0) := f
f'(1) := ppoint f
f'(2) := boundary_map f
f'(3) := -Ω(f)
f'(4) := -Ω(ppoint f)
f'(5) := -Ω(boundary_map f)
f'(n+6) := Ω²(f'(n))
We can show that these sequences are equivalent, hence the sequence (X',f') is an exact
sequence. Now we get the fiber sequence by taking the set-truncation of this sequence.
-/
import .chain_complex algebra.homotopy_group
open eq pointed sigma fiber equiv is_equiv sigma.ops is_trunc equiv.ops nat trunc algebra function
/--------------
PART 1
--------------/
namespace chain_complex
definition fiber_sequence_helper [constructor] (v : Σ(X Y : Type*), X →* Y)
: Σ(Z X : Type*), Z →* X :=
⟨pfiber v.2.2, v.1, ppoint v.2.2⟩
definition fiber_sequence_helpern (v : Σ(X Y : Type*), X →* Y) (n : )
: Σ(Z X : Type*), Z →* X :=
iterate fiber_sequence_helper n v
universe variable u
variables {X Y : pType.{u}} (f : X →* Y) (n : )
include f
definition fiber_sequence_carrier : Type* :=
(fiber_sequence_helpern ⟨X, Y, f⟩ n).2.1
definition fiber_sequence_fun
: fiber_sequence_carrier f (n + 1) →* fiber_sequence_carrier f n :=
(fiber_sequence_helpern ⟨X, Y, f⟩ n).2.2
/- Definition 8.4.3 -/
definition fiber_sequence : type_chain_complex.{0 u} + :=
begin
fconstructor,
{ exact fiber_sequence_carrier f},
{ exact fiber_sequence_fun f},
{ intro n x, cases n with n,
{ exact point_eq x},
{ exact point_eq x}}
end
definition is_exact_fiber_sequence : is_exact_t (fiber_sequence f) :=
λn x p, fiber.mk (fiber.mk x p) rfl
/- (generalization of) Lemma 8.4.4(i)(ii) -/
definition fiber_sequence_carrier_equiv
: fiber_sequence_carrier f (n+3) ≃ Ω(fiber_sequence_carrier f n) :=
calc
fiber_sequence_carrier f (n+3) ≃ fiber (fiber_sequence_fun f (n+1)) pt : erfl
... ≃ Σ(x : fiber_sequence_carrier f _), fiber_sequence_fun f (n+1) x = pt
: fiber.sigma_char
... ≃ Σ(x : fiber (fiber_sequence_fun f n) pt), fiber_sequence_fun f _ x = pt
: erfl
... ≃ Σ(v : Σ(x : fiber_sequence_carrier f _), fiber_sequence_fun f _ x = pt),
fiber_sequence_fun f _ (fiber.mk v.1 v.2) = pt
: by exact sigma_equiv_sigma !fiber.sigma_char (λa, erfl)
... ≃ Σ(v : Σ(x : fiber_sequence_carrier f _), fiber_sequence_fun f _ x = pt),
v.1 = pt
: erfl
... ≃ Σ(v : Σ(x : fiber_sequence_carrier f _), x = pt),
fiber_sequence_fun f _ v.1 = pt
: sigma_assoc_comm_equiv
... ≃ fiber_sequence_fun f _ !center.1 = pt
: @(sigma_equiv_of_is_contr_left _) !is_contr_sigma_eq'
... ≃ fiber_sequence_fun f _ pt = pt
: erfl
... ≃ pt = pt
: by exact !equiv_eq_closed_left !respect_pt
... ≃ Ω(fiber_sequence_carrier f n) : erfl
/- computation rule -/
definition fiber_sequence_carrier_equiv_eq
(x : fiber_sequence_carrier f (n+1)) (p : fiber_sequence_fun f n x = pt)
(q : fiber_sequence_fun f (n+1) (fiber.mk x p) = pt)
: fiber_sequence_carrier_equiv f n (fiber.mk (fiber.mk x p) q)
= !respect_pt⁻¹ ⬝ ap (fiber_sequence_fun f n) q⁻¹ ⬝ p :=
begin
refine _ ⬝ !con.assoc⁻¹,
apply whisker_left,
refine transport_eq_Fl _ _ ⬝ _,
apply whisker_right,
refine inverse2 !ap_inv ⬝ !inv_inv ⬝ _,
refine ap_compose (fiber_sequence_fun f n) pr₁ _ ⬝
ap02 (fiber_sequence_fun f n) !ap_pr1_center_eq_sigma_eq',
end
definition fiber_sequence_carrier_equiv_inv_eq
(p : Ω(fiber_sequence_carrier f n)) : (fiber_sequence_carrier_equiv f n)⁻¹ᵉ p =
fiber.mk (fiber.mk pt (respect_pt (fiber_sequence_fun f n) ⬝ p)) idp :=
begin
apply inv_eq_of_eq,
refine _ ⬝ !fiber_sequence_carrier_equiv_eq⁻¹, esimp,
exact !inv_con_cancel_left⁻¹
end
definition fiber_sequence_carrier_pequiv
: fiber_sequence_carrier f (n+3) ≃* Ω(fiber_sequence_carrier f n) :=
pequiv_of_equiv (fiber_sequence_carrier_equiv f n)
begin
esimp,
apply con.left_inv
end
definition fiber_sequence_carrier_pequiv_eq
(x : fiber_sequence_carrier f (n+1)) (p : fiber_sequence_fun f n x = pt)
(q : fiber_sequence_fun f (n+1) (fiber.mk x p) = pt)
: fiber_sequence_carrier_pequiv f n (fiber.mk (fiber.mk x p) q)
= !respect_pt⁻¹ ⬝ ap (fiber_sequence_fun f n) q⁻¹ ⬝ p :=
fiber_sequence_carrier_equiv_eq f n x p q
definition fiber_sequence_carrier_pequiv_inv_eq
(p : Ω(fiber_sequence_carrier f n)) : (fiber_sequence_carrier_pequiv f n)⁻¹ᵉ* p =
fiber.mk (fiber.mk pt (respect_pt (fiber_sequence_fun f n) ⬝ p)) idp :=
fiber_sequence_carrier_equiv_inv_eq f n p
attribute pequiv._trans_of_to_pmap [unfold 3]
/- Lemma 8.4.4(iii) -/
definition fiber_sequence_fun_eq_helper
(p : Ω(fiber_sequence_carrier f (n + 1))) :
fiber_sequence_carrier_pequiv f n
(fiber_sequence_fun f (n + 3)
((fiber_sequence_carrier_pequiv f (n + 1))⁻¹ᵉ* p)) =
ap1 (fiber_sequence_fun f n) p⁻¹ :=
begin
refine ap (λx, fiber_sequence_carrier_pequiv f n (fiber_sequence_fun f (n + 3) x))
(fiber_sequence_carrier_pequiv_inv_eq f (n+1) p) ⬝ _,
/- the following three lines are rewriting some reflexivities: -/
-- replace (n + 3) with (n + 2 + 1),
-- refine ap (fiber_sequence_carrier_pequiv f n)
-- (fiber_sequence_fun_eq1 f (n+2) _ idp) ⬝ _,
refine fiber_sequence_carrier_pequiv_eq f n pt (respect_pt (fiber_sequence_fun f n)) _ ⬝ _,
esimp,
apply whisker_right,
apply whisker_left,
apply ap02, apply inverse2, apply idp_con,
end
theorem fiber_sequence_carrier_pequiv_eq_point_eq_idp :
fiber_sequence_carrier_pequiv_eq f n
(Point (fiber_sequence_carrier f (n+1)))
(respect_pt (fiber_sequence_fun f n))
(respect_pt (fiber_sequence_fun f (n + 1))) = idp :=
begin
apply con_inv_eq_idp,
refine ap (λx, whisker_left _ (_ ⬝ x)) _ ⬝ _,
{ reflexivity},
{ reflexivity},
esimp,
refine ap (whisker_left _)
(transport_eq_Fl_idp_left (fiber_sequence_fun f n)
(respect_pt (fiber_sequence_fun f n))) ⬝ _,
apply whisker_left_idp_con_eq_assoc
end
theorem fiber_sequence_fun_phomotopy_helper :
(fiber_sequence_carrier_pequiv f n ∘*
fiber_sequence_fun f (n + 3)) ∘*
(fiber_sequence_carrier_pequiv f (n + 1))⁻¹ᵉ* ~*
ap1 (fiber_sequence_fun f n) ∘* pinverse :=
begin
fapply phomotopy.mk,
{ exact (fiber_sequence_fun_eq_helper f n)},
{ esimp, rewrite [idp_con], refine _ ⬝ whisker_left _ !idp_con⁻¹,
apply whisker_right,
apply whisker_left,
exact fiber_sequence_carrier_pequiv_eq_point_eq_idp f n}
end
theorem fiber_sequence_fun_eq : Π(x : fiber_sequence_carrier f (n + 4)),
fiber_sequence_carrier_pequiv f n (fiber_sequence_fun f (n + 3) x) =
ap1 (fiber_sequence_fun f n) (fiber_sequence_carrier_pequiv f (n + 1) x)⁻¹ :=
homotopy_of_inv_homotopy
(pequiv.to_equiv (fiber_sequence_carrier_pequiv f (n + 1)))
(fiber_sequence_fun_eq_helper f n)
theorem fiber_sequence_fun_phomotopy :
fiber_sequence_carrier_pequiv f n ∘*
fiber_sequence_fun f (n + 3) ~*
(ap1 (fiber_sequence_fun f n) ∘* pinverse) ∘* fiber_sequence_carrier_pequiv f (n + 1) :=
begin
apply phomotopy_of_pinv_right_phomotopy,
apply fiber_sequence_fun_phomotopy_helper
end
definition boundary_map : Ω Y →* pfiber f :=
fiber_sequence_fun f 2 ∘* (fiber_sequence_carrier_pequiv f 0)⁻¹ᵉ*
/--------------
PART 2
--------------/
/- Now we are ready to define the long exact sequence of homotopy groups.
First we define its carrier -/
definition homotopy_groups : → Type*
| 0 := Y
| 1 := X
| 2 := pfiber f
| (k+3) := Ω (homotopy_groups k)
definition homotopy_groups_add3 [unfold_full] :
homotopy_groups f (n+3) = Ω (homotopy_groups f n) :=
by reflexivity
definition homotopy_groups_mul3
: Πn, homotopy_groups f (3 * n) = Ω[n] Y :> Type*
| 0 := proof rfl qed
| (k+1) := proof ap (λX, Ω X) (homotopy_groups_mul3 k) qed
definition homotopy_groups_mul3add1
: Πn, homotopy_groups f (3 * n + 1) = Ω[n] X :> Type*
| 0 := by reflexivity
| (k+1) := proof ap (λX, Ω X) (homotopy_groups_mul3add1 k) qed
definition homotopy_groups_mul3add2
: Πn, homotopy_groups f (3 * n + 2) = Ω[n] (pfiber f) :> Type*
| 0 := by reflexivity
| (k+1) := proof ap (λX, Ω X) (homotopy_groups_mul3add2 k) qed
/- The maps between the homotopy groups -/
definition homotopy_groups_fun
: Π(n : ), homotopy_groups f (n+1) →* homotopy_groups f n
| 0 := proof f qed
| 1 := proof ppoint f qed
| 2 := proof boundary_map f qed
| 3 := proof ap1 f ∘* pinverse qed
| 4 := proof ap1 (ppoint f) ∘* pinverse qed
| 5 := proof ap1 (boundary_map f) ∘* pinverse qed
| (k+6) := proof ap1 (ap1 (homotopy_groups_fun k)) qed
definition homotopy_groups_fun_add6 [unfold_full] :
homotopy_groups_fun f (n + 6) = ap1 (ap1 (homotopy_groups_fun f n)) :=
proof idp qed
/- this is a simpler defintion of the functions, but which are the same as the previous ones
(there is a pointed homotopy) -/
definition homotopy_groups_fun'
: Π(n : ), homotopy_groups f (n+1) →* homotopy_groups f n
| 0 := proof f qed
| 1 := proof ppoint f qed
| 2 := proof boundary_map f qed
| (k+3) := proof ap1 (homotopy_groups_fun' k) ∘* pinverse qed
definition homotopy_groups_fun'_add3 [unfold_full] :
homotopy_groups_fun' f (n+3) = ap1 (homotopy_groups_fun' f n) ∘* pinverse :=
proof idp qed
theorem homotopy_groups_fun_eq
: Π(n : ), homotopy_groups_fun f n ~* homotopy_groups_fun' f n
| 0 := by reflexivity
| 1 := by reflexivity
| 2 := by reflexivity
| 3 := by reflexivity
| 4 := by reflexivity
| 5 := by reflexivity
| (k+6) :=
begin
rewrite [homotopy_groups_fun_add6 f k],
replace (k + 6) with (k + 3 + 3),
rewrite [homotopy_groups_fun'_add3 f (k+3)],
rewrite [homotopy_groups_fun'_add3 f k],
refine _ ⬝* pwhisker_right _ !ap1_compose⁻¹*,
refine _ ⬝* !passoc⁻¹*,
refine !comp_pid⁻¹* ⬝* _,
refine pconcat2 _ _,
/- Currently ap1_phomotopy is defined using function extensionality -/
{ apply ap1_phomotopy, apply pap ap1, apply homotopy_groups_fun_eq},
{ refine _ ⬝* (pwhisker_right _ ap1_pinverse)⁻¹*, fapply phomotopy.mk,
{ intro q, esimp, exact !inv_inv⁻¹},
{ reflexivity}}
end
definition homotopy_groups_fun_add3 :
homotopy_groups_fun f (n + 3) ~* ap1 (homotopy_groups_fun f n) ∘* pinverse :=
begin
refine homotopy_groups_fun_eq f (n+3) ⬝* _,
exact pwhisker_right _ (ap1_phomotopy (homotopy_groups_fun_eq f n)⁻¹*),
end
definition fiber_sequence_pequiv_homotopy_groups :
Πn, fiber_sequence_carrier f n ≃* homotopy_groups f n
| 0 := by reflexivity
| 1 := by reflexivity
| 2 := by reflexivity
| (k+3) :=
begin
refine fiber_sequence_carrier_pequiv f k ⬝e* _,
apply loop_space_pequiv,
exact fiber_sequence_pequiv_homotopy_groups k
end
definition fiber_sequence_pequiv_homotopy_groups_add3
: fiber_sequence_pequiv_homotopy_groups f (n + 3) =
ap1 (fiber_sequence_pequiv_homotopy_groups f n) ∘* fiber_sequence_carrier_pequiv f n :=
by reflexivity
definition fiber_sequence_pequiv_homotopy_groups_3_phomotopy
: fiber_sequence_pequiv_homotopy_groups f 3 ~* fiber_sequence_carrier_pequiv f 0 :=
begin
refine fiber_sequence_pequiv_homotopy_groups_add3 f 0 ⬝p* _,
refine pwhisker_right _ ap1_id ⬝* _,
apply pid_comp
end
theorem fiber_sequence_phomotopy_homotopy_groups' :
Π(n : ),
fiber_sequence_pequiv_homotopy_groups f n ∘* fiber_sequence_fun f n ~*
homotopy_groups_fun' f n ∘* fiber_sequence_pequiv_homotopy_groups f (n + 1)
| 0 := by reflexivity
| 1 := by reflexivity
| 2 :=
begin
refine !pid_comp ⬝* _,
replace homotopy_groups_fun' f 2 with boundary_map f,
refine _ ⬝* pwhisker_left _ (fiber_sequence_pequiv_homotopy_groups_3_phomotopy f)⁻¹*,
apply phomotopy_of_pinv_right_phomotopy,
reflexivity
end
| (k+3) :=
begin
replace (k + 3 + 1) with (k + 1 + 3),
rewrite [fiber_sequence_pequiv_homotopy_groups_add3 f k,
fiber_sequence_pequiv_homotopy_groups_add3 f (k+1)],
refine !passoc ⬝* _,
refine pwhisker_left _ (fiber_sequence_fun_phomotopy f k) ⬝* _,
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
apply pwhisker_right,
rewrite [homotopy_groups_fun'_add3],
refine _ ⬝* !passoc⁻¹*,
refine _ ⬝* pwhisker_left _ !ap1_compose_pinverse,
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
apply pwhisker_right,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose,
apply ap1_phomotopy,
exact fiber_sequence_phomotopy_homotopy_groups' k
end
theorem fiber_sequence_phomotopy_homotopy_groups (n : )
(x : fiber_sequence_carrier f (n + 1)) :
fiber_sequence_pequiv_homotopy_groups f n (fiber_sequence_fun f n x) =
homotopy_groups_fun f n (fiber_sequence_pequiv_homotopy_groups f (n + 1) x) :=
begin
refine fiber_sequence_phomotopy_homotopy_groups' f n x ⬝ _,
exact (homotopy_groups_fun_eq f n _)⁻¹
end
definition type_LES_of_homotopy_groups [constructor] : type_chain_complex + :=
transfer_type_chain_complex
(fiber_sequence f)
(homotopy_groups_fun f)
(fiber_sequence_pequiv_homotopy_groups f)
(fiber_sequence_phomotopy_homotopy_groups f)
definition is_exact_type_LES_of_homotopy_groups : is_exact_t (type_LES_of_homotopy_groups f) :=
begin
intro n,
apply is_exact_at_t_transfer,
apply is_exact_fiber_sequence
end
/- the long exact sequence of homotopy groups -/
definition LES_of_homotopy_groups [constructor] : chain_complex + :=
trunc_chain_complex
(transfer_type_chain_complex
(fiber_sequence f)
(homotopy_groups_fun f)
(fiber_sequence_pequiv_homotopy_groups f)
(fiber_sequence_phomotopy_homotopy_groups f))
/- the fiber sequence is exact -/
definition is_exact_LES_of_homotopy_groups : is_exact (LES_of_homotopy_groups f) :=
begin
intro n,
apply is_exact_at_trunc,
apply is_exact_type_LES_of_homotopy_groups
end
/- for a numeral, the carrier of the fiber sequence is definitionally what we want
(as pointed sets) -/
example : LES_of_homotopy_groups f 6 = π*[2] Y :> Set* := by reflexivity
example : LES_of_homotopy_groups f 7 = π*[2] X :> Set* := by reflexivity
example : LES_of_homotopy_groups f 8 = π*[2] (pfiber f) :> Set* := by reflexivity
/- for a numeral, the functions of the fiber sequence is definitionally what we want
(as pointed function). All these functions have at most one "pinverse" in them, and these
inverses are inside the π→*[2*k].
-/
example : cc_to_fn (LES_of_homotopy_groups f) 6 = π→*[2] f
:> (_ →* _) := by reflexivity
example : cc_to_fn (LES_of_homotopy_groups f) 7 = π→*[2] (ppoint f)
:> (_ →* _) := by reflexivity
example : cc_to_fn (LES_of_homotopy_groups f) 8 = π→*[2] (boundary_map f)
:> (_ →* _) := by reflexivity
example : cc_to_fn (LES_of_homotopy_groups f) 9 = π→*[2] (ap1 f ∘* pinverse)
:> (_ →* _) := by reflexivity
example : cc_to_fn (LES_of_homotopy_groups f) 10 = π→*[2] (ap1 (ppoint f) ∘* pinverse)
:> (_ →* _) := by reflexivity
example : cc_to_fn (LES_of_homotopy_groups f) 11 = π→*[2] (ap1 (boundary_map f) ∘* pinverse)
:> (_ →* _) := by reflexivity
example : cc_to_fn (LES_of_homotopy_groups f) 12 = π→*[4] f
:> (_ →* _) := by reflexivity
/- the carrier of the fiber sequence is what we want for natural numbers of the form
3n, 3n+1 and 3n+2 -/
definition LES_of_homotopy_groups_mul3 (n : )
: LES_of_homotopy_groups f (3 * n) = π*[n] Y :> Set* :=
begin
apply ptrunctype_eq_of_pType_eq,
exact ap (ptrunc 0) (homotopy_groups_mul3 f n)
end
definition LES_of_homotopy_groups_mul3add1 (n : )
: LES_of_homotopy_groups f (3 * n + 1) = π*[n] X :> Set* :=
begin
apply ptrunctype_eq_of_pType_eq,
exact ap (ptrunc 0) (homotopy_groups_mul3add1 f n)
end
definition LES_of_homotopy_groups_mul3add2 (n : )
: LES_of_homotopy_groups f (3 * n + 2) = π*[n] (pfiber f) :> Set* :=
begin
apply ptrunctype_eq_of_pType_eq,
exact ap (ptrunc 0) (homotopy_groups_mul3add2 f n)
end
definition LES_of_homotopy_groups_mul3' (n : )
: LES_of_homotopy_groups f (3 * n) = π*[n] Y :> Type :=
begin
exact ap (ptrunc 0) (homotopy_groups_mul3 f n)
end
definition LES_of_homotopy_groups_mul3add1' (n : )
: LES_of_homotopy_groups f (3 * n + 1) = π*[n] X :> Type :=
begin
exact ap (ptrunc 0) (homotopy_groups_mul3add1 f n)
end
definition LES_of_homotopy_groups_mul3add2' (n : )
: LES_of_homotopy_groups f (3 * n + 2) = π*[n] (pfiber f) :> Type :=
begin
exact ap (ptrunc 0) (homotopy_groups_mul3add2 f n)
end
definition group_LES_of_homotopy_groups (n : ) : group (LES_of_homotopy_groups f (n + 3)) :=
group_homotopy_group 0 (homotopy_groups f n)
definition comm_group_LES_of_homotopy_groups (n : ) : comm_group (LES_of_homotopy_groups f (n + 6)) :=
comm_group_homotopy_group 0 (homotopy_groups f n)
end chain_complex
open group prod succ_str fin
/--------------
PART 3
--------------/
namespace chain_complex
--TODO: move
definition tr_mul_tr {A : Type*} (n : ) (p q : Ω[n + 1] A) :
tr p *[πg[n+1] A] tr q = tr (p ⬝ q) :=
by reflexivity
definition is_homomorphism_cast_loop_space_succ_eq_in {A : Type*} (n : ) :
is_homomorphism
(cast (ap (trunc 0 ∘ pointed.carrier) (loop_space_succ_eq_in A (succ n)))
: πg[n+1+1] A → πg[n+1] Ω A) :=
begin
intro g h, induction g with g, induction h with h,
xrewrite [tr_mul_tr, - + fn_cast_eq_cast_fn _ (λn, tr), tr_mul_tr, ↑cast, -tr_compose,
loop_space_succ_eq_in_concat, - + tr_compose],
end
definition is_homomorphism_inverse (A : Type*) (n : )
: is_homomorphism (λp, p⁻¹ : πag[n+2] A → πag[n+2] A) :=
begin
intro g h, rewrite mul.comm,
induction g with g, induction h with h,
exact ap tr !con_inv
end
section
universe variable u
parameters {X Y : pType.{u}} (f : X →* Y)
definition homotopy_groups2 [reducible] : +6 → Type*
| (n, fin.mk 0 H) := Ω[2*n] Y
| (n, fin.mk 1 H) := Ω[2*n] X
| (n, fin.mk 2 H) := Ω[2*n] (pfiber f)
| (n, fin.mk 3 H) := Ω[2*n + 1] Y
| (n, fin.mk 4 H) := Ω[2*n + 1] X
| (n, fin.mk k H) := Ω[2*n + 1] (pfiber f)
definition homotopy_groups2_add1 (n : ) : Π(x : fin (succ 5)),
homotopy_groups2 (n+1, x) = Ω Ω(homotopy_groups2 (n, x))
| (fin.mk 0 H) := by reflexivity
| (fin.mk 1 H) := by reflexivity
| (fin.mk 2 H) := by reflexivity
| (fin.mk 3 H) := by reflexivity
| (fin.mk 4 H) := by reflexivity
| (fin.mk 5 H) := by reflexivity
| (fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition homotopy_groups_fun2 : Π(n : +6), homotopy_groups2 (S n) →* homotopy_groups2 n
| (n, fin.mk 0 H) := proof Ω→[2*n] f qed
| (n, fin.mk 1 H) := proof Ω→[2*n] (ppoint f) qed
| (n, fin.mk 2 H) :=
proof Ω→[2*n] (boundary_map f) ∘* pcast (loop_space_succ_eq_in Y (2*n)) qed
| (n, fin.mk 3 H) := proof Ω→[2*n + 1] f ∘* pinverse qed
| (n, fin.mk 4 H) := proof Ω→[2*n + 1] (ppoint f) ∘* pinverse qed
| (n, fin.mk 5 H) :=
proof (Ω→[2*n + 1] (boundary_map f) ∘* pinverse) ∘* pcast (loop_space_succ_eq_in Y (2*n+1)) qed
| (n, fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition homotopy_groups_fun2_add1_0 (n : ) (H : 0 < succ 5)
: homotopy_groups_fun2 (n+1, fin.mk 0 H) ~*
cast proof idp qed ap1 (ap1 (homotopy_groups_fun2 (n, fin.mk 0 H))) :=
by reflexivity
definition homotopy_groups_fun2_add1_1 (n : ) (H : 1 < succ 5)
: homotopy_groups_fun2 (n+1, fin.mk 1 H) ~*
cast proof idp qed ap1 (ap1 (homotopy_groups_fun2 (n, fin.mk 1 H))) :=
by reflexivity
definition homotopy_groups_fun2_add1_2 (n : ) (H : 2 < succ 5)
: homotopy_groups_fun2 (n+1, fin.mk 2 H) ~*
cast proof idp qed ap1 (ap1 (homotopy_groups_fun2 (n, fin.mk 2 H))) :=
begin
esimp, refine _ ⬝* (ap1_phomotopy !ap1_compose)⁻¹*, refine _ ⬝* !ap1_compose⁻¹*,
apply pwhisker_left,
refine !pcast_ap_loop_space ⬝* ap1_phomotopy !pcast_ap_loop_space,
end
definition homotopy_groups_fun2_add1_3 (n : ) (H : 3 < succ 5)
: homotopy_groups_fun2 (n+1, fin.mk 3 H) ~*
cast proof idp qed ap1 (ap1 (homotopy_groups_fun2 (n, fin.mk 3 H))) :=
begin
esimp, refine _ ⬝* (ap1_phomotopy !ap1_compose)⁻¹*, refine _ ⬝* !ap1_compose⁻¹*,
apply pwhisker_left,
exact ap1_pinverse⁻¹* ⬝* ap1_phomotopy !ap1_pinverse⁻¹*
end
definition homotopy_groups_fun2_add1_4 (n : ) (H : 4 < succ 5)
: homotopy_groups_fun2 (n+1, fin.mk 4 H) ~*
cast proof idp qed ap1 (ap1 (homotopy_groups_fun2 (n, fin.mk 4 H))) :=
begin
esimp, refine _ ⬝* (ap1_phomotopy !ap1_compose)⁻¹*, refine _ ⬝* !ap1_compose⁻¹*,
apply pwhisker_left,
exact ap1_pinverse⁻¹* ⬝* ap1_phomotopy !ap1_pinverse⁻¹*
end
definition homotopy_groups_fun2_add1_5 (n : ) (H : 5 < succ 5)
: homotopy_groups_fun2 (n+1, fin.mk 5 H) ~*
cast proof idp qed ap1 (ap1 (homotopy_groups_fun2 (n, fin.mk 5 H))) :=
begin
esimp, refine _ ⬝* (ap1_phomotopy !ap1_compose)⁻¹*, refine _ ⬝* !ap1_compose⁻¹*,
apply pconcat2,
{ esimp, refine _ ⬝* (ap1_phomotopy !ap1_compose)⁻¹*, refine _ ⬝* !ap1_compose⁻¹*,
apply pwhisker_left,
exact ap1_pinverse⁻¹* ⬝* ap1_phomotopy !ap1_pinverse⁻¹*},
{ refine !pcast_ap_loop_space ⬝* ap1_phomotopy !pcast_ap_loop_space}
end
definition nat_of_str [unfold 2] [reducible] {n : } : × fin (succ n) → :=
λx, succ n * pr1 x + val (pr2 x)
definition str_of_nat {n : } : × fin (succ n) :=
λm, (m / (succ n), mk_mod n m)
definition nat_of_str_6S [unfold 2] [reducible]
: Π(x : stratified + 5), nat_of_str x + 1 = nat_of_str (@S (stratified + 5) x)
| (n, fin.mk 0 H) := by reflexivity
| (n, fin.mk 1 H) := by reflexivity
| (n, fin.mk 2 H) := by reflexivity
| (n, fin.mk 3 H) := by reflexivity
| (n, fin.mk 4 H) := by reflexivity
| (n, fin.mk 5 H) := by reflexivity
| (n, fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition fin_prod_nat_equiv_nat [constructor] (n : ) : × fin (succ n) ≃ :=
equiv.MK nat_of_str str_of_nat
abstract begin
intro m, unfold [nat_of_str, str_of_nat, mk_mod],
refine _ ⬝ (eq_div_mul_add_mod m (succ n))⁻¹,
rewrite [mul.comm]
end end
abstract begin
intro x, cases x with m k,
cases k with k H,
apply prod_eq: esimp [str_of_nat],
{ rewrite [add.comm, add_mul_div_self_left _ _ (!zero_lt_succ),
div_eq_zero_of_lt H, zero_add]},
{ apply eq_of_veq, esimp [mk_mod],
rewrite [add.comm, add_mul_mod_self_left, mod_eq_of_lt H]}
end end
/-
note: in the following theorem the (n+1) case is 6 times the same,
so maybe this can be simplified
-/
definition homotopy_groups2_pequiv' : Π(n : ) (x : fin (nat.succ 5)),
homotopy_groups f (nat_of_str (n, x)) ≃* homotopy_groups2 (n, x)
| 0 (fin.mk 0 H) := by reflexivity
| 0 (fin.mk 1 H) := by reflexivity
| 0 (fin.mk 2 H) := by reflexivity
| 0 (fin.mk 3 H) := by reflexivity
| 0 (fin.mk 4 H) := by reflexivity
| 0 (fin.mk 5 H) := by reflexivity
| (n+1) (fin.mk 0 H) :=
begin
-- uncomment the next two lines to have prettier subgoals
-- esimp, replace (succ 5 * (n + 1) + 0) with (6*n+3+3),
-- rewrite [+homotopy_groups_add3, homotopy_groups2_add1],
apply loop_space_pequiv, apply loop_space_pequiv,
rexact homotopy_groups2_pequiv' n (fin.mk 0 H)
end
| (n+1) (fin.mk 1 H) :=
begin
apply loop_space_pequiv, apply loop_space_pequiv,
rexact homotopy_groups2_pequiv' n (fin.mk 1 H)
end
| (n+1) (fin.mk 2 H) :=
begin
apply loop_space_pequiv, apply loop_space_pequiv,
rexact homotopy_groups2_pequiv' n (fin.mk 2 H)
end
| (n+1) (fin.mk 3 H) :=
begin
apply loop_space_pequiv, apply loop_space_pequiv,
rexact homotopy_groups2_pequiv' n (fin.mk 3 H)
end
| (n+1) (fin.mk 4 H) :=
begin
apply loop_space_pequiv, apply loop_space_pequiv,
rexact homotopy_groups2_pequiv' n (fin.mk 4 H)
end
| (n+1) (fin.mk 5 H) :=
begin
apply loop_space_pequiv, apply loop_space_pequiv,
rexact homotopy_groups2_pequiv' n (fin.mk 5 H)
end
| n (fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition homotopy_groups2_pequiv : Π(x : +6),
homotopy_groups f (nat_of_str x) ≃* homotopy_groups2 x
| (n, x) := homotopy_groups2_pequiv' n x
/- all cases where n>0 are basically the same -/
definition homotopy_groups_fun2_phomotopy (x : +6) :
homotopy_groups2_pequiv x ∘* homotopy_groups_fun f (nat_of_str x) ~*
(homotopy_groups_fun2 x ∘* homotopy_groups2_pequiv (S x))
∘* pcast (ap (homotopy_groups f) (nat_of_str_6S x)) :=
begin
cases x with n x, cases x with k H,
cases k with k, rotate 1, cases k with k, rotate 1, cases k with k, rotate 1,
cases k with k, rotate 1, cases k with k, rotate 1, cases k with k, rotate 2,
{ /-k=0-/
induction n with n IH,
{ refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*,
reflexivity},
{ refine _ ⬝* !comp_pid⁻¹*,
refine _ ⬝* pwhisker_right _ (!homotopy_groups_fun2_add1_0)⁻¹*,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
exact IH ⬝* !comp_pid}},
{ /-k=1-/
induction n with n IH,
{ refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*,
reflexivity},
{ refine _ ⬝* !comp_pid⁻¹*,
refine _ ⬝* pwhisker_right _ (!homotopy_groups_fun2_add1_1)⁻¹*,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
exact IH ⬝* !comp_pid}},
{ /-k=2-/
induction n with n IH,
{ refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*,
refine _ ⬝* !comp_pid⁻¹*,
reflexivity},
{ refine _ ⬝* !comp_pid⁻¹*,
refine _ ⬝* pwhisker_right _ (!homotopy_groups_fun2_add1_2)⁻¹*,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
exact IH ⬝* !comp_pid}},
{ /-k=3-/
induction n with n IH,
{ refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*,
reflexivity},
{ refine _ ⬝* !comp_pid⁻¹*,
refine _ ⬝* pwhisker_right _ (!homotopy_groups_fun2_add1_3)⁻¹*,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
exact IH ⬝* !comp_pid}},
{ /-k=4-/
induction n with n IH,
{ refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*,
reflexivity},
{ refine _ ⬝* !comp_pid⁻¹*,
refine _ ⬝* pwhisker_right _ (!homotopy_groups_fun2_add1_4)⁻¹*,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
exact IH ⬝* !comp_pid}},
{ /-k=5-/
induction n with n IH,
{ refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹*,
refine !comp_pid⁻¹* ⬝* pconcat2 _ _,
{ exact !comp_pid⁻¹*},
{ refine cast (ap (λx, _ ~* loop_space_pequiv x) !loop_space_pequiv_rfl)⁻¹ _,
refine cast (ap (λx, _ ~* x) !loop_space_pequiv_rfl)⁻¹ _, reflexivity}},
{ refine _ ⬝* !comp_pid⁻¹*,
refine _ ⬝* pwhisker_right _ (!homotopy_groups_fun2_add1_5)⁻¹*,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
exact IH ⬝* !comp_pid}},
{ /-k=k'+6-/ exfalso, apply lt_le_antisymm H, apply le_add_left}
end
definition type_LES_of_homotopy_groups2 [constructor] : type_chain_complex +6 :=
transfer_type_chain_complex2
(type_LES_of_homotopy_groups f)
!fin_prod_nat_equiv_nat
nat_of_str_6S
@homotopy_groups_fun2
@homotopy_groups2_pequiv
begin
intro m x,
refine homotopy_groups_fun2_phomotopy m x ⬝ _,
apply ap (homotopy_groups_fun2 m), apply ap (homotopy_groups2_pequiv (S m)),
esimp, exact ap010 cast !ap_compose⁻¹ x
end
definition is_exact_type_LES_of_homotopy_groups2 : is_exact_t (type_LES_of_homotopy_groups2) :=
begin
intro n,
apply is_exact_at_transfer2,
apply is_exact_type_LES_of_homotopy_groups
end
definition LES_of_homotopy_groups2 [constructor] : chain_complex +6 :=
trunc_chain_complex type_LES_of_homotopy_groups2
/--------------
PART 4
--------------/
definition homotopy_groups3 [reducible] : +6 → Set*
| (n, fin.mk 0 H) := π*[2*n] Y
| (n, fin.mk 1 H) := π*[2*n] X
| (n, fin.mk 2 H) := π*[2*n] (pfiber f)
| (n, fin.mk 3 H) := π*[2*n + 1] Y
| (n, fin.mk 4 H) := π*[2*n + 1] X
| (n, fin.mk k H) := π*[2*n + 1] (pfiber f)
definition homotopy_groups3eq2 [reducible]
: Π(n : +6), ptrunc 0 (homotopy_groups2 n) ≃* homotopy_groups3 n
| (n, fin.mk 0 H) := by reflexivity
| (n, fin.mk 1 H) := by reflexivity
| (n, fin.mk 2 H) := by reflexivity
| (n, fin.mk 3 H) := by reflexivity
| (n, fin.mk 4 H) := by reflexivity
| (n, fin.mk 5 H) := by reflexivity
| (n, fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition homotopy_groups_fun3 : Π(n : +6), homotopy_groups3 (S n) →* homotopy_groups3 n
| (n, fin.mk 0 H) := proof π→*[2*n] f qed
| (n, fin.mk 1 H) := proof π→*[2*n] (ppoint f) qed
| (n, fin.mk 2 H) :=
proof π→*[2*n] (boundary_map f) ∘* pcast (ap (ptrunc 0) (loop_space_succ_eq_in Y (2*n))) qed
| (n, fin.mk 3 H) := proof π→*[2*n + 1] f ∘* tinverse qed
| (n, fin.mk 4 H) := proof π→*[2*n + 1] (ppoint f) ∘* tinverse qed
| (n, fin.mk 5 H) :=
proof (π→*[2*n + 1] (boundary_map f) ∘* tinverse)
∘* pcast (ap (ptrunc 0) (loop_space_succ_eq_in Y (2*n+1))) qed
| (n, fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition homotopy_groups_fun3eq2 [reducible]
: Π(n : +6), homotopy_groups3eq2 n ∘* ptrunc_functor 0 (homotopy_groups_fun2 n) ~*
homotopy_groups_fun3 n ∘* homotopy_groups3eq2 (S n)
| (n, fin.mk 0 H) := by reflexivity
| (n, fin.mk 1 H) := by reflexivity
| (n, fin.mk 2 H) :=
begin
refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹*,
refine !ptrunc_functor_pcompose ⬝* _,
apply pwhisker_left, apply ptrunc_functor_pcast,
end
| (n, fin.mk 3 H) :=
begin
refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹*,
refine !ptrunc_functor_pcompose ⬝* _,
apply pwhisker_left, apply ptrunc_functor_pinverse
end
| (n, fin.mk 4 H) :=
begin
refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹*,
refine !ptrunc_functor_pcompose ⬝* _,
apply pwhisker_left, apply ptrunc_functor_pinverse
end
| (n, fin.mk 5 H) :=
begin
refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹*,
refine !ptrunc_functor_pcompose ⬝* _,
apply pconcat2,
{ refine !ptrunc_functor_pcompose ⬝* _,
apply pwhisker_left, apply ptrunc_functor_pinverse},
{ apply ptrunc_functor_pcast}
end
| (n, fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition LES_of_homotopy_groups3 [constructor] : chain_complex +6 :=
transfer_chain_complex
LES_of_homotopy_groups2
homotopy_groups_fun3
homotopy_groups3eq2
homotopy_groups_fun3eq2
definition is_exact_LES_of_homotopy_groups3 : is_exact (LES_of_homotopy_groups3) :=
begin
intro n,
apply is_exact_at_transfer,
apply is_exact_at_trunc,
apply is_exact_type_LES_of_homotopy_groups2
end
end
open is_trunc
universe variable u
variables {X Y : pType.{u}} (f : X →* Y) (n : )
include f
/- the carrier of the fiber sequence is definitionally what we want (as pointed sets) -/
example : LES_of_homotopy_groups3 f (str_of_nat 6) = π*[2] Y :> Set* := by reflexivity
example : LES_of_homotopy_groups3 f (str_of_nat 7) = π*[2] X :> Set* := by reflexivity
example : LES_of_homotopy_groups3 f (str_of_nat 8) = π*[2] (pfiber f) :> Set* := by reflexivity
example : LES_of_homotopy_groups3 f (str_of_nat 9) = π*[3] Y :> Set* := by reflexivity
example : LES_of_homotopy_groups3 f (str_of_nat 10) = π*[3] X :> Set* := by reflexivity
example : LES_of_homotopy_groups3 f (str_of_nat 11) = π*[3] (pfiber f) :> Set* := by reflexivity
definition LES_of_homotopy_groups3_0 : LES_of_homotopy_groups3 f (n, 0) = π*[2*n] Y :=
by reflexivity
definition LES_of_homotopy_groups3_1 : LES_of_homotopy_groups3 f (n, 1) = π*[2*n] X :=
by reflexivity
definition LES_of_homotopy_groups3_2 : LES_of_homotopy_groups3 f (n, 2) = π*[2*n] (pfiber f) :=
by reflexivity
definition LES_of_homotopy_groups3_3 : LES_of_homotopy_groups3 f (n, 3) = π*[2*n + 1] Y :=
by reflexivity
definition LES_of_homotopy_groups3_4 : LES_of_homotopy_groups3 f (n, 4) = π*[2*n + 1] X :=
by reflexivity
definition LES_of_homotopy_groups3_5 : LES_of_homotopy_groups3 f (n, 5) = π*[2*n + 1] (pfiber f):=
by reflexivity
/- the functions of the fiber sequence is definitionally what we want (as pointed function).
-/
definition LES_of_homotopy_groups_fun3_0 :
cc_to_fn (LES_of_homotopy_groups3 f) (n, 0) = π→*[2*n] f :=
by reflexivity
definition LES_of_homotopy_groups_fun3_1 :
cc_to_fn (LES_of_homotopy_groups3 f) (n, 1) = π→*[2*n] (ppoint f) :=
by reflexivity
definition LES_of_homotopy_groups_fun3_2 : cc_to_fn (LES_of_homotopy_groups3 f) (n, 2) =
π→*[2*n] (boundary_map f) ∘* pcast (ap (ptrunc 0) (loop_space_succ_eq_in Y (2*n))) :=
by reflexivity
definition LES_of_homotopy_groups_fun3_3 :
cc_to_fn (LES_of_homotopy_groups3 f) (n, 3) = π→*[2*n + 1] f ∘* tinverse :=
by reflexivity
definition LES_of_homotopy_groups_fun3_4 :
cc_to_fn (LES_of_homotopy_groups3 f) (n, 4) = π→*[2*n + 1] (ppoint f) ∘* tinverse :=
by reflexivity
definition LES_of_homotopy_groups_fun3_5 : cc_to_fn (LES_of_homotopy_groups3 f) (n, 5) =
(π→*[2*n + 1] (boundary_map f) ∘* tinverse) ∘*
pcast (ap (ptrunc 0) (loop_space_succ_eq_in Y (2*n+1))) :=
by reflexivity
definition group_LES_of_homotopy_groups3_0 :
Π(k : ) (H : k + 3 < succ 5), group (LES_of_homotopy_groups3 f (0, fin.mk (k+3) H))
| 0 H := begin rexact group_homotopy_group 0 Y end
| 1 H := begin rexact group_homotopy_group 0 X end
| 2 H := begin rexact group_homotopy_group 0 (pfiber f) end
| (k+3) H := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition comm_group_LES_of_homotopy_groups3 (n : ) : Π(x : fin (succ 5)),
comm_group (LES_of_homotopy_groups3 f (n + 1, x))
| (fin.mk 0 H) := proof comm_group_homotopy_group (2*n) Y qed
| (fin.mk 1 H) := proof comm_group_homotopy_group (2*n) X qed
| (fin.mk 2 H) := proof comm_group_homotopy_group (2*n) (pfiber f) qed
| (fin.mk 3 H) := proof comm_group_homotopy_group (2*n+1) Y qed
| (fin.mk 4 H) := proof comm_group_homotopy_group (2*n+1) X qed
| (fin.mk 5 H) := proof comm_group_homotopy_group (2*n+1) (pfiber f) qed
| (fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition CommGroup_LES_of_homotopy_groups3 (n : +6) : CommGroup.{u} :=
CommGroup.mk (LES_of_homotopy_groups3 f (pr1 n + 1, pr2 n))
(comm_group_LES_of_homotopy_groups3 f (pr1 n) (pr2 n))
definition homomorphism_LES_of_homotopy_groups_fun3 : Π(k : +6),
CommGroup_LES_of_homotopy_groups3 f (S k) →g CommGroup_LES_of_homotopy_groups3 f k
| (k, fin.mk 0 H) :=
proof homomorphism.mk (cc_to_fn (LES_of_homotopy_groups3 f) (k + 1, 0))
(phomotopy_group_functor_mul _ _) qed
| (k, fin.mk 1 H) :=
proof homomorphism.mk (cc_to_fn (LES_of_homotopy_groups3 f) (k + 1, 1))
(phomotopy_group_functor_mul _ _) qed
| (k, fin.mk 2 H) :=
begin
apply homomorphism.mk (cc_to_fn (LES_of_homotopy_groups3 f) (k + 1, 2)),
exact abstract begin rewrite [LES_of_homotopy_groups_fun3_2],
refine @is_homomorphism_compose _ _ _ _ _ _ (π→*[2 * (k + 1)] boundary_map f) _ _ _,
{ apply group_homotopy_group ((2 * k) + 1)},
{ apply phomotopy_group_functor_mul},
{ rewrite [▸*, -ap_compose', ▸*],
apply is_homomorphism_cast_loop_space_succ_eq_in} end end
end
| (k, fin.mk 3 H) :=
begin
apply homomorphism.mk (cc_to_fn (LES_of_homotopy_groups3 f) (k + 1, 3)),
exact abstract begin rewrite [LES_of_homotopy_groups_fun3_3],
refine @is_homomorphism_compose _ _ _ _ _ _ (π→*[2 * (k + 1) + 1] f) tinverse _ _,
{ apply group_homotopy_group (2 * (k+1))},
{ apply phomotopy_group_functor_mul},
{ apply is_homomorphism_inverse} end end
end
| (k, fin.mk 4 H) :=
begin
apply homomorphism.mk (cc_to_fn (LES_of_homotopy_groups3 f) (k + 1, 4)),
exact abstract begin rewrite [LES_of_homotopy_groups_fun3_4],
refine @is_homomorphism_compose _ _ _ _ _ _ (π→*[2 * (k + 1) + 1] (ppoint f)) tinverse _ _,
{ apply group_homotopy_group (2 * (k+1))},
{ apply phomotopy_group_functor_mul},
{ apply is_homomorphism_inverse} end end
end
| (k, fin.mk 5 H) :=
begin
apply homomorphism.mk (cc_to_fn (LES_of_homotopy_groups3 f) (k + 1, 5)),
exact abstract begin rewrite [LES_of_homotopy_groups_fun3_5],
refine @is_homomorphism_compose _ _ _ _ _ _
(π→*[2 * (k + 1) + 1] (boundary_map f) ∘ tinverse) _ _ _,
{ refine @is_homomorphism_compose _ _ _ _ _ _
(π→*[2 * (k + 1) + 1] (boundary_map f)) tinverse _ _,
{ apply group_homotopy_group (2 * (k+1))},
{ apply phomotopy_group_functor_mul},
{ apply is_homomorphism_inverse}},
{ rewrite [▸*, -ap_compose', ▸*],
apply is_homomorphism_cast_loop_space_succ_eq_in} end end
end
| (k, fin.mk (l+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
--TODO: the maps 3, 4 and 5 are anti-homomorphisms.
end chain_complex