Spectral/homotopy/sec83.hlean
2016-02-18 16:16:55 -05:00

49 lines
1.2 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Section 8.3
import types.trunc types.pointed homotopy.connectedness homotopy.sphere homotopy.circle algebra.group algebra.homotopy_group
open eq is_trunc is_equiv nat equiv trunc function circle algebra pointed is_trunc.trunc_index homotopy
notation `Floris` := sorry
-- Lemma 8.3.1
definition homotopy_group_of_is_trunc (A : Type*) (n : ) (p : is_trunc n A) : ∀(k : ), πG[n+k+1] A = G0 :=
begin
intro k,
apply @trivial_group_of_is_contr,
apply is_trunc_trunc_of_is_trunc,
apply is_contr_loop_of_is_trunc,
apply @is_trunc_of_leq A n _,
induction k with k IHk,
{
apply is_trunc.trunc_index.le.refl
},
{
induction n with n IHn,
{
constructor
},
{
exact Floris
}
}
end
-- Lemma 8.3.2
definition trunc_trunc (n k : ℕ₋₂) (p : k ≤ n) (A : Type)
: trunc k (trunc n A) ≃ trunc k A :=
sorry
definition zero_trunc_of_iterated_loop_space (k : ) (A : Type*)
: trunc 0 (Ω[k] A) ≃ Ω[k](pointed.MK (trunc k A) (tr pt)) :=
sorry
definition homotopy_group_of_is_conn (A : Type*) (n : ) (p : is_conn n A) : ∀(k : ), (k ≤ n) → is_contr(π[k] A) :=
begin
intros k H,
exact Floris
end
-- Corollary 8.3.3