Spectral/algebra/product_group.hlean

92 lines
3.5 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Egbert Rijke
Constructions with groups
-/
import algebra.group_theory hit.set_quotient types.list types.sum .subgroup .quotient_group
open eq algebra is_trunc set_quotient relation sigma prod prod.ops sum list trunc function
equiv
namespace group
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
{A B : AbGroup}
/- Binary products (direct product) of Groups -/
definition product_one [constructor] : G × G' := (one, one)
definition product_inv [unfold 3] : G × G' → G × G' :=
λv, (v.1⁻¹, v.2⁻¹)
definition product_mul [unfold 3 4] : G × G' → G × G' → G × G' :=
λv w, (v.1 * w.1, v.2 * w.2)
section
local notation 1 := product_one
local postfix ⁻¹ := product_inv
local infix * := product_mul
theorem product_mul_assoc (g₁ g₂ g₃ : G × G') : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
prod_eq !mul.assoc !mul.assoc
theorem product_one_mul (g : G × G') : 1 * g = g :=
prod_eq !one_mul !one_mul
theorem product_mul_one (g : G × G') : g * 1 = g :=
prod_eq !mul_one !mul_one
theorem product_mul_left_inv (g : G × G') : g⁻¹ * g = 1 :=
prod_eq !mul.left_inv !mul.left_inv
theorem product_mul_comm {G G' : AbGroup} (g h : G × G') : g * h = h * g :=
prod_eq !mul.comm !mul.comm
end
variables (G G')
definition group_prod [constructor] : group (G × G') :=
group.mk _ product_mul product_mul_assoc product_one product_one_mul product_mul_one
product_inv product_mul_left_inv
definition product [constructor] : Group :=
Group.mk _ (group_prod G G')
definition ab_group_prod [constructor] (G G' : AbGroup) : ab_group (G × G') :=
⦃ab_group, group_prod G G', mul_comm := product_mul_comm⦄
definition ab_product [constructor] (G G' : AbGroup) : AbGroup :=
AbGroup.mk _ (ab_group_prod G G')
infix ` ×g `:60 := group.product
infix ` ×ag `:60 := group.ab_product
definition product_inl [constructor] (G H : Group) : G →g G ×g H :=
homomorphism.mk (λx, (x, one)) (λx y, prod_eq !refl !one_mul⁻¹)
definition product_inr [constructor] (G H : Group) : H →g G ×g H :=
homomorphism.mk (λx, (one, x)) (λx y, prod_eq !one_mul⁻¹ !refl)
definition Group_sum_elim [constructor] {G H : Group} (I : AbGroup) (φ : G →g I) (ψ : H →g I) : G ×g H →g I :=
homomorphism.mk (λx, φ x.1 * ψ x.2) abstract (λx y, calc
φ (x.1 * y.1) * ψ (x.2 * y.2) = (φ x.1 * φ y.1) * (ψ x.2 * ψ y.2)
: by exact ap011 mul (to_respect_mul φ x.1 y.1) (to_respect_mul ψ x.2 y.2)
... = (φ x.1 * ψ x.2) * (φ y.1 * ψ y.2)
: by exact interchange I (φ x.1) (φ y.1) (ψ x.2) (ψ y.2)) end
definition product_functor [constructor] {G G' H H' : Group} (φ : G →g H) (ψ : G' →g H') :
G ×g G' →g H ×g H' :=
homomorphism.mk (λx, (φ x.1, ψ x.2)) (λx y, prod_eq !to_respect_mul !to_respect_mul)
infix ` ×→g `:60 := group.product_functor
definition product_isomorphism [constructor] {G G' H H' : Group} (φ : G ≃g H) (ψ : G' ≃g H') :
G ×g G' ≃g H ×g H' :=
isomorphism.mk (φ ×→g ψ) !is_equiv_prod_functor
infix ` ×≃g `:60 := group.product_isomorphism
definition product_group_mul_eq {G H : Group} (g h : G ×g H) : g * h = product_mul g h :=
idp
end group