Spectral/algebra/is_short_exact.hlean
2017-05-21 00:39:53 -04:00

49 lines
1.7 KiB
Text

/-
Copyright (c) 2017 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad
Short exact sequences
-/
import .quotient_group
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
is_trunc function sphere unit sum prod
structure is_short_exact {A B : Type} {C : Type*} (f : A → B) (g : B → C) :=
(is_emb : is_embedding f)
(im_in_ker : Π(a:A), g (f a) = pt)
(ker_in_im : Π(b:B), (g b = pt) → image f b)
(is_surj : is_surjective g)
structure is_short_exact_t {A B : Type} {C : Type*} (f : A → B) (g : B → C) :=
(is_emb : is_embedding f)
(im_in_ker : Π(a:A), g (f a) = pt)
(ker_in_im : Π(b:B), (g b = pt) → fiber f b)
(is_surj : is_split_surjective g)
definition is_short_exact_of_is_exact {X A B C Y : Group}
(k : X →g A) (f : A →g B) (g : B →g C) (l : C →g Y)
(hX : is_contr X) (hY : is_contr Y)
(kf : is_exact k f) (fg : is_exact f g) (gl : is_exact g l) : is_short_exact f g :=
begin
constructor,
{ apply to_is_embedding_homomorphism, intro a p,
induction is_exact.ker_in_im kf a p with x q,
exact q⁻¹ ⬝ ap k !is_prop.elim ⬝ to_respect_one k },
{ exact is_exact.im_in_ker fg },
{ exact is_exact.ker_in_im fg },
{ intro c, exact is_exact.ker_in_im gl c !is_prop.elim },
end
definition is_short_exact_equiv {A B A' B' : Type} {C C' : Type*}
{f' : A' → B'} {g' : B' → C'} (f : A → B) (g : B → C)
(eA : A ≃ A') (eB : B ≃ B') (eC : C ≃* C')
(h : hsquare f f' eA eB) (h : hsquare g g' eB eC)
(H : is_short_exact f' g') : is_short_exact f g :=
begin
constructor,
{ exact sorry },
{ exact sorry },
{ exact sorry },
{ exact sorry }
end