c3650048f0
add some properties about pointed maps and groups
192 lines
8.4 KiB
Text
192 lines
8.4 KiB
Text
import .pushout types.pointed2 ..move_to_lib
|
||
|
||
open susp eq pointed function is_equiv lift equiv is_trunc nat
|
||
|
||
namespace susp
|
||
variables {X X' Y Y' Z : Type*}
|
||
|
||
definition iterate_susp_iterate_susp_rev (n m : ℕ) (A : Type*) :
|
||
iterate_susp n (iterate_susp m A) ≃* iterate_susp (m + n) A :=
|
||
begin
|
||
induction n with n e,
|
||
{ reflexivity },
|
||
{ exact susp_pequiv e }
|
||
end
|
||
|
||
definition iterate_susp_pequiv [constructor] (n : ℕ) {X Y : Type*} (f : X ≃* Y) :
|
||
iterate_susp n X ≃* iterate_susp n Y :=
|
||
begin
|
||
induction n with n e,
|
||
{ exact f },
|
||
{ exact susp_pequiv e }
|
||
end
|
||
|
||
open algebra nat
|
||
definition iterate_susp_iterate_susp (n m : ℕ) (A : Type*) :
|
||
iterate_susp n (iterate_susp m A) ≃* iterate_susp (n + m) A :=
|
||
iterate_susp_iterate_susp_rev n m A ⬝e* pequiv_of_eq (ap (λk, iterate_susp k A) (add.comm m n))
|
||
|
||
definition plift_susp.{u v} : Π(A : Type*), plift.{u v} (susp A) ≃* susp (plift.{u v} A) :=
|
||
begin
|
||
intro A,
|
||
calc
|
||
plift.{u v} (susp A) ≃* susp A : by exact (pequiv_plift (susp A))⁻¹ᵉ*
|
||
... ≃* susp (plift.{u v} A) : by exact susp_pequiv (pequiv_plift.{u v} A)
|
||
end
|
||
|
||
definition is_contr_susp [instance] (A : Type) [H : is_contr A] : is_contr (susp A) :=
|
||
begin
|
||
apply is_contr.mk north,
|
||
intro x, induction x,
|
||
reflexivity,
|
||
exact merid !center,
|
||
apply eq_pathover_constant_left_id_right, apply square_of_eq,
|
||
exact whisker_left idp (ap merid !eq_of_is_contr)
|
||
end
|
||
|
||
definition loop_susp_pintro_phomotopy {X Y : Type*} {f g : ⅀ X →* Y} (p : f ~* g) :
|
||
loop_susp_pintro X Y f ~* loop_susp_pintro X Y g :=
|
||
pwhisker_right (loop_susp_unit X) (Ω⇒ p)
|
||
|
||
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*}
|
||
{f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂}
|
||
{f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂}
|
||
|
||
definition susp_functor_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare (⅀→ f₁₀) (⅀→ f₁₂) (⅀→ f₀₁) (⅀→ f₂₁) :=
|
||
!susp_functor_pcompose⁻¹* ⬝* susp_functor_phomotopy p ⬝* !susp_functor_pcompose
|
||
|
||
definition susp_to_loop_psquare (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂)
|
||
(f₀₁ : susp A₀₀ →* A₀₂) (f₂₁ : susp A₂₀ →* A₂₂) : psquare (⅀→ f₁₀) f₁₂ f₀₁ f₂₁ →
|
||
psquare f₁₀ (Ω→ f₁₂) (loop_susp_pintro A₀₀ A₀₂ f₀₁) (loop_susp_pintro A₂₀ A₂₂ f₂₁) :=
|
||
begin
|
||
intro p,
|
||
refine pvconcat _ (ap1_psquare p),
|
||
exact (loop_susp_unit_natural f₁₀)⁻¹*
|
||
end
|
||
|
||
definition loop_to_susp_square (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂)
|
||
(f₀₁ : A₀₀ →* Ω A₀₂) (f₂₁ : A₂₀ →* Ω A₂₂) : psquare f₁₀ (Ω→ f₁₂) f₀₁ f₂₁ →
|
||
psquare (⅀→ f₁₀) f₁₂ (susp_pelim A₀₀ A₀₂ f₀₁) (susp_pelim A₂₀ A₂₂ f₂₁) :=
|
||
begin
|
||
intro p,
|
||
refine susp_functor_psquare p ⬝v* _,
|
||
exact psquare_transpose (loop_susp_counit_natural f₁₂)
|
||
end
|
||
|
||
open pushout unit prod sigma sigma.ops
|
||
|
||
section
|
||
parameters {A : Type*} {n : ℕ} [HA : is_conn n A]
|
||
|
||
-- we end up not using this, because to prove that the
|
||
-- composition with the first projection is loop_susp_counit A
|
||
-- is hideous without HIT computations on path constructors
|
||
parameter (A)
|
||
definition pullback_diagonal_prod_of_wedge : susp (Ω A)
|
||
≃ Σ (a : A) (w : wedge A A), prod_of_wedge w = (a, a) :=
|
||
begin
|
||
refine equiv.trans _
|
||
(comm_equiv_unc (λ z, prod_of_wedge (prod.pr1 z) = (prod.pr2 z, prod.pr2 z))),
|
||
apply equiv.symm,
|
||
apply equiv.trans (sigma_equiv_sigma_right
|
||
(λ w, sigma_equiv_sigma_right
|
||
(λ a, prod_eq_equiv (prod_of_wedge w) (a, a)))),
|
||
apply equiv.trans !pushout.flattening', esimp,
|
||
fapply pushout.equiv
|
||
(λ z, ⟨pt, z.2⟩) (λ z, ⟨pt, glue z.1 ▸ z.2⟩) (λ p, star) (λ p, star),
|
||
{ apply equiv.trans !sigma_unit_left, fapply equiv.MK,
|
||
{ intro z, induction z with a w, induction w with p q, exact p ⬝ q⁻¹ },
|
||
{ intro p, exact ⟨pt, (p, idp)⟩ },
|
||
{ intro p, reflexivity },
|
||
{ intro z, induction z with a w, induction w with p q, induction q,
|
||
reflexivity } },
|
||
{ fapply equiv.MK,
|
||
{ intro z, exact star },
|
||
{ intro u, exact ⟨pt, ⟨pt, (idp, idp)⟩ ⟩ },
|
||
{ intro u, induction u, reflexivity },
|
||
{ intro z, induction z with a w, induction w with b z,
|
||
induction z with p q, induction p, esimp at q, induction q,
|
||
reflexivity } },
|
||
{ fapply equiv.MK,
|
||
{ intro z, exact star },
|
||
{ intro u, exact ⟨pt, ⟨pt, (idp, idp)⟩ ⟩ },
|
||
{ intro u, induction u, reflexivity },
|
||
{ intro z, induction z with a w, induction w with b z,
|
||
induction z with p q, induction q, esimp at p, induction p,
|
||
reflexivity } },
|
||
{ intro z, induction z with u w, induction u, induction w with a z,
|
||
induction z with p q, reflexivity },
|
||
{ intro z, induction z with u w, induction u, induction w with a z,
|
||
induction z with p q, reflexivity }
|
||
end
|
||
|
||
parameter {A}
|
||
-- instead we directly compare the fibers, using flattening twice
|
||
definition fiber_loop_susp_counit_equiv (a : A)
|
||
: fiber (loop_susp_counit A) a ≃ fiber prod_of_wedge (a, a) :=
|
||
begin
|
||
apply equiv.trans !fiber.sigma_char, apply equiv.trans !pushout.flattening',
|
||
apply equiv.symm, apply equiv.trans !fiber.sigma_char,
|
||
apply equiv.trans (sigma_equiv_sigma_right
|
||
(λ w, prod_eq_equiv (prod_of_wedge w) (a, a))), esimp,
|
||
apply equiv.trans !pushout.flattening',
|
||
esimp,
|
||
fapply pushout.equiv (λ z, ⟨pt, z.2⟩) (λ z, ⟨pt, glue z.1 ▸ z.2⟩)
|
||
(λ z, ⟨star, z.2⟩) (λ z, ⟨star, glue z.1 ▸ z.2⟩),
|
||
{ fapply equiv.MK,
|
||
{ intro w, induction w with u z, induction z with p q,
|
||
exact ⟨q ⬝ p⁻¹, q⟩ },
|
||
{ intro z, induction z with p q, apply dpair star,
|
||
exact (p⁻¹ ⬝ q, q) },
|
||
{ intro z, induction z with p q, esimp, induction q, esimp,
|
||
rewrite [idp_con,inv_inv] },
|
||
{ intro w, induction w with u z, induction u, induction z with p q,
|
||
esimp, induction q, rewrite [idp_con,inv_inv] } },
|
||
{ fapply equiv.MK,
|
||
{ intro w, induction w with b z, induction z with p q, exact ⟨star, q⟩ },
|
||
{ intro z, induction z with u p, induction u, esimp at p, esimp,
|
||
apply dpair a, esimp, exact (idp, p) },
|
||
{ intro z, induction z with u p, induction u, reflexivity },
|
||
{ intro w, induction w with b z, induction z with p q, esimp,
|
||
induction p, reflexivity } },
|
||
{ fapply equiv.MK,
|
||
{ intro w, induction w with b z, induction z with p q, exact ⟨star, p⟩ },
|
||
{ intro z, induction z with u p, induction u, esimp at p, esimp,
|
||
apply dpair a, esimp, exact (p, idp) },
|
||
{ intro z, induction z with u p, induction u, reflexivity },
|
||
{ intro w, induction w with b z, induction z with p q, esimp,
|
||
induction q, reflexivity } },
|
||
{ intro w, induction w with u z, induction u, induction z with p q,
|
||
reflexivity },
|
||
{ intro w, induction w with u z, induction u, induction z with p q,
|
||
esimp, induction q, esimp, krewrite prod_transport, fapply sigma_eq,
|
||
{ exact idp },
|
||
{ esimp, rewrite eq_transport_Fl, rewrite eq_transport_Fl,
|
||
krewrite elim_glue, krewrite [-ap_compose' pr1 prod_of_wedge (glue star)],
|
||
krewrite elim_glue, esimp, apply eq_pathover, rewrite idp_con, esimp,
|
||
apply square_of_eq, rewrite [idp_con,idp_con,inv_inv] } }
|
||
end
|
||
|
||
include HA
|
||
|
||
open is_conn trunc_index
|
||
|
||
parameter (A)
|
||
-- connectivity of loop_susp_counit
|
||
definition is_conn_fun_loop_susp_counit {k : ℕ} (H : k ≤ 2 * n)
|
||
: is_conn_fun k (loop_susp_counit A) :=
|
||
begin
|
||
intro a, apply is_conn.is_conn_equiv_closed_rev k (fiber_loop_susp_counit_equiv a),
|
||
fapply @is_conn.is_conn_of_le (fiber prod_of_wedge (a, a)) k (2 * n)
|
||
(of_nat_le_of_nat H),
|
||
assert H : of_nat (2 * n) = of_nat n + of_nat n,
|
||
{ rewrite (of_nat_add_of_nat n n), apply ap of_nat,
|
||
apply trans (nat.mul_comm 2 n),
|
||
apply ap (λ k, k + n), exact nat.zero_add n },
|
||
rewrite H,
|
||
exact is_conn_fun_prod_of_wedge n n A A (a, a)
|
||
end
|
||
end
|
||
|
||
end susp
|