1590 lines
64 KiB
Text
1590 lines
64 KiB
Text
-- definitions, theorems and attributes which should be moved to files in the HoTT library
|
||
|
||
import homotopy.sphere2 homotopy.cofiber homotopy.wedge hit.prop_trunc hit.set_quotient
|
||
|
||
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
|
||
is_trunc function sphere unit sum prod bool
|
||
|
||
attribute is_prop.elim_set [unfold 6]
|
||
|
||
definition add_comm_right {A : Type} [add_comm_semigroup A] (n m k : A) : n + m + k = n + k + m :=
|
||
!add.assoc ⬝ ap (add n) !add.comm ⬝ !add.assoc⁻¹
|
||
|
||
-- move to chain_complex (or another file). rename chain_complex.is_exact
|
||
structure is_exact_t {A B : Type} {C : Type*} (f : A → B) (g : B → C) :=
|
||
( im_in_ker : Π(a:A), g (f a) = pt)
|
||
( ker_in_im : Π(b:B), (g b = pt) → fiber f b)
|
||
|
||
structure is_exact {A B : Type} {C : Type*} (f : A → B) (g : B → C) :=
|
||
( im_in_ker : Π(a:A), g (f a) = pt)
|
||
( ker_in_im : Π(b:B), (g b = pt) → image f b)
|
||
|
||
definition is_exact_g {A B C : Group} (f : A →g B) (g : B →g C) :=
|
||
is_exact f g
|
||
|
||
definition is_exact_ag {A B C : AbGroup} (f : A →g B) (g : B →g C) :=
|
||
is_exact f g
|
||
|
||
definition is_exact_g.mk {A B C : Group} {f : A →g B} {g : B →g C}
|
||
(H₁ : Πa, g (f a) = 1) (H₂ : Πb, g b = 1 → image f b) : is_exact_g f g :=
|
||
is_exact.mk H₁ H₂
|
||
|
||
definition is_exact.im_in_ker2 {A B : Type} {C : Set*} {f : A → B} {g : B → C} (H : is_exact f g)
|
||
{b : B} (h : image f b) : g b = pt :=
|
||
begin
|
||
induction h with a p, exact ap g p⁻¹ ⬝ is_exact.im_in_ker H a
|
||
end
|
||
|
||
-- TO DO: give less univalency proof
|
||
definition is_exact_homotopy {A B : Type} {C : Type*} {f f' : A → B} {g g' : B → C}
|
||
(p : f ~ f') (q : g ~ g') (H : is_exact f g) : is_exact f' g' :=
|
||
begin
|
||
induction p using homotopy.rec_on_idp,
|
||
induction q using homotopy.rec_on_idp,
|
||
exact H
|
||
end
|
||
|
||
definition is_contr_middle_of_is_exact {A B : Type} {C : Type*} {f : A → B} {g : B → C} (H : is_exact f g)
|
||
[is_contr A] [is_set B] [is_contr C] : is_contr B :=
|
||
begin
|
||
apply is_contr.mk (f pt),
|
||
intro b,
|
||
induction is_exact.ker_in_im H b !is_prop.elim,
|
||
exact ap f !is_prop.elim ⬝ p
|
||
end
|
||
|
||
definition is_surjective_of_is_exact_of_is_contr {A B : Type} {C : Type*} {f : A → B} {g : B → C}
|
||
(H : is_exact f g) [is_contr C] : is_surjective f :=
|
||
λb, is_exact.ker_in_im H b !is_prop.elim
|
||
|
||
section chain_complex
|
||
open succ_str chain_complex
|
||
definition is_exact_of_is_exact_at {N : succ_str} {A : chain_complex N} {n : N}
|
||
(H : is_exact_at A n) : is_exact (cc_to_fn A (S n)) (cc_to_fn A n) :=
|
||
is_exact.mk (cc_is_chain_complex A n) H
|
||
end chain_complex
|
||
|
||
namespace algebra
|
||
definition ab_group_unit [constructor] : ab_group unit :=
|
||
⦃ab_group, trivial_group, mul_comm := λx y, idp⦄
|
||
|
||
definition inf_group_loopn (n : ℕ) (A : Type*) [H : is_succ n] : inf_group (Ω[n] A) :=
|
||
by induction H; exact _
|
||
|
||
definition one_unique {A : Type} [group A] {a : A} (H : Πb, a * b = b) : a = 1 :=
|
||
!mul_one⁻¹ ⬝ H 1
|
||
|
||
definition pSet_of_AddGroup [constructor] [reducible] [coercion] (G : AddGroup) : Set* :=
|
||
pSet_of_Group G
|
||
attribute algebra._trans_of_pSet_of_AddGroup [unfold 1]
|
||
attribute algebra._trans_of_pSet_of_AddGroup_1 algebra._trans_of_pSet_of_AddGroup_2 [constructor]
|
||
|
||
definition pType_of_AddGroup [reducible] [constructor] : AddGroup → Type* :=
|
||
algebra._trans_of_pSet_of_AddGroup_1
|
||
definition Set_of_AddGroup [reducible] [constructor] : AddGroup → Set :=
|
||
algebra._trans_of_pSet_of_AddGroup_2
|
||
|
||
-- --
|
||
-- definition Group_of_AddAbGroup [coercion] [constructor] (G : AddAbGroup) : Group :=
|
||
-- AddGroup.mk G _
|
||
-- --
|
||
|
||
definition AddGroup_of_AddAbGroup [coercion] [constructor] (G : AddAbGroup) : AddGroup :=
|
||
AddGroup.mk G _
|
||
|
||
attribute algebra._trans_of_AddGroup_of_AddAbGroup_1
|
||
algebra._trans_of_AddGroup_of_AddAbGroup
|
||
algebra._trans_of_AddGroup_of_AddAbGroup_3 [constructor]
|
||
attribute algebra._trans_of_AddGroup_of_AddAbGroup_2 [unfold 1]
|
||
|
||
definition add_ab_group_AddAbGroup2 [instance] (G : AddAbGroup) : add_ab_group G :=
|
||
AddAbGroup.struct G
|
||
|
||
end algebra
|
||
|
||
namespace eq
|
||
|
||
definition eq.rec_to {A : Type} {a₀ : A} {P : Π⦃a₁⦄, a₀ = a₁ → Type}
|
||
{a₁ : A} (p₀ : a₀ = a₁) (H : P p₀) ⦃a₂ : A⦄ (p : a₀ = a₂) : P p :=
|
||
begin
|
||
induction p₀, induction p, exact H
|
||
end
|
||
|
||
definition eq.rec_to2 {A : Type} {P : Π⦃a₀ a₁⦄, a₀ = a₁ → Type}
|
||
{a₀ a₀' a₁' : A} (p' : a₀' = a₁') (p₀ : a₀ = a₀') (H : P p') ⦃a₁ : A⦄ (p : a₀ = a₁) : P p :=
|
||
begin
|
||
induction p₀, induction p', induction p, exact H
|
||
end
|
||
|
||
definition eq.rec_right_inv {A : Type} (f : A ≃ A) {P : Π⦃a₀ a₁⦄, f a₀ = a₁ → Type}
|
||
(H : Πa, P (right_inv f a)) ⦃a₀ a₁ : A⦄ (p : f a₀ = a₁) : P p :=
|
||
begin
|
||
revert a₀ p, refine equiv_rect f⁻¹ᵉ _ _,
|
||
intro a₀ p, exact eq.rec_to (right_inv f a₀) (H a₀) p,
|
||
end
|
||
|
||
definition eq.rec_equiv {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type}
|
||
(H : P (idpath (f a₀))) ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p :=
|
||
begin
|
||
assert qr : Σ(q : a₀ = a₁), ap f q = p,
|
||
{ exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ },
|
||
cases qr with q r, apply transport P r, induction q, exact H
|
||
end
|
||
|
||
definition eq.rec_equiv_symm {A B : Type} {a₁ : A} (f : A ≃ B) {P : Π{a₀}, f a₀ = f a₁ → Type}
|
||
(H : P (idpath (f a₁))) ⦃a₀ : A⦄ (p : f a₀ = f a₁) : P p :=
|
||
begin
|
||
assert qr : Σ(q : a₀ = a₁), ap f q = p,
|
||
{ exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ },
|
||
cases qr with q r, apply transport P r, induction q, exact H
|
||
end
|
||
|
||
definition eq.rec_equiv_to_same {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type}
|
||
⦃a₁' : A⦄ (p' : f a₀ = f a₁') (H : P p') ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p :=
|
||
begin
|
||
revert a₁' p' H a₁ p,
|
||
refine eq.rec_equiv f _,
|
||
exact eq.rec_equiv f
|
||
end
|
||
|
||
definition eq.rec_equiv_to {A A' B : Type} {a₀ : A} (f : A ≃ B) (g : A' ≃ B)
|
||
{P : Π{a₁}, f a₀ = g a₁ → Type}
|
||
⦃a₁' : A'⦄ (p' : f a₀ = g a₁') (H : P p') ⦃a₁ : A'⦄ (p : f a₀ = g a₁) : P p :=
|
||
begin
|
||
assert qr : Σ(q : g⁻¹ (f a₀) = a₁), (right_inv g (f a₀))⁻¹ ⬝ ap g q = p,
|
||
{ exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p),
|
||
whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ },
|
||
assert q'r' : Σ(q' : g⁻¹ (f a₀) = a₁'), (right_inv g (f a₀))⁻¹ ⬝ ap g q' = p',
|
||
{ exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p'),
|
||
whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ },
|
||
induction qr with q r, induction q'r' with q' r',
|
||
induction q, induction q',
|
||
induction r, induction r',
|
||
exact H
|
||
end
|
||
|
||
definition eq.rec_grading {A A' B : Type} {a : A} (f : A ≃ B) (g : A' ≃ B)
|
||
{P : Π{b}, f a = b → Type}
|
||
{a' : A'} (p' : f a = g a') (H : P p') ⦃b : B⦄ (p : f a = b) : P p :=
|
||
begin
|
||
revert b p, refine equiv_rect g _ _,
|
||
exact eq.rec_equiv_to f g p' H
|
||
end
|
||
|
||
definition eq.rec_grading_unbased {A B B' C : Type} (f : A ≃ B) (g : B ≃ C) (h : B' ≃ C)
|
||
{P : Π{b c}, g b = c → Type}
|
||
{a' : A} {b' : B'} (p' : g (f a') = h b') (H : P p') ⦃b : B⦄ ⦃c : C⦄ (q : f a' = b)
|
||
(p : g b = c) : P p :=
|
||
begin
|
||
induction q, exact eq.rec_grading (f ⬝e g) h p' H p
|
||
end
|
||
|
||
definition eq.rec_symm {A : Type} {a₀ : A} {P : Π⦃a₁⦄, a₁ = a₀ → Type}
|
||
(H : P idp) ⦃a₁ : A⦄ (p : a₁ = a₀) : P p :=
|
||
begin
|
||
cases p, exact H
|
||
end
|
||
|
||
definition is_contr_homotopy_group_of_is_contr (A : Type*) (n : ℕ) [is_contr A] : is_contr (π[n] A) :=
|
||
begin
|
||
apply is_trunc_trunc_of_is_trunc,
|
||
apply is_contr_loop_of_is_trunc,
|
||
apply is_trunc_of_is_contr
|
||
end
|
||
|
||
definition cast_fn_cast_square {A : Type} {B C : A → Type} (f : Π⦃a⦄, B a → C a) {a₁ a₂ : A}
|
||
(p : a₁ = a₂) (q : a₂ = a₁) (r : p ⬝ q = idp) (b : B a₁) :
|
||
cast (ap C q) (f (cast (ap B p) b)) = f b :=
|
||
have q⁻¹ = p, from inv_eq_of_idp_eq_con r⁻¹,
|
||
begin induction this, induction q, reflexivity end
|
||
|
||
section -- squares
|
||
variables {A B : Type} {a a' a'' a₀₀ a₂₀ a₄₀ a₀₂ a₂₂ a₂₄ a₀₄ a₄₂ a₄₄ a₁ a₂ a₃ a₄ : A}
|
||
/-a₀₀-/ {p₁₀ p₁₀' : a₀₀ = a₂₀} /-a₂₀-/ {p₃₀ : a₂₀ = a₄₀} /-a₄₀-/
|
||
{p₀₁ p₀₁' : a₀₀ = a₀₂} /-s₁₁-/ {p₂₁ p₂₁' : a₂₀ = a₂₂} /-s₃₁-/ {p₄₁ : a₄₀ = a₄₂}
|
||
/-a₀₂-/ {p₁₂ p₁₂' : a₀₂ = a₂₂} /-a₂₂-/ {p₃₂ : a₂₂ = a₄₂} /-a₄₂-/
|
||
{p₀₃ : a₀₂ = a₀₄} /-s₁₃-/ {p₂₃ : a₂₂ = a₂₄} /-s₃₃-/ {p₄₃ : a₄₂ = a₄₄}
|
||
/-a₀₄-/ {p₁₄ : a₀₄ = a₂₄} /-a₂₄-/ {p₃₄ : a₂₄ = a₄₄} /-a₄₄-/
|
||
|
||
variables {s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁} {s₃₁ : square p₃₀ p₃₂ p₂₁ p₄₁}
|
||
{s₁₃ : square p₁₂ p₁₄ p₀₃ p₂₃} {s₃₃ : square p₃₂ p₃₄ p₂₃ p₄₃}
|
||
|
||
definition natural_square_eq {A B : Type} {a a' : A} {f g : A → B} (p : f ~ g) (q : a = a')
|
||
: natural_square p q = square_of_pathover (apd p q) :=
|
||
idp
|
||
|
||
definition eq_of_square_hrfl_hconcat_eq {A : Type} {a a' : A} {p p' : a = a'} (q : p = p')
|
||
: eq_of_square (hrfl ⬝hp q⁻¹) = !idp_con ⬝ q :=
|
||
by induction q; induction p; reflexivity
|
||
|
||
definition aps_vrfl {A B : Type} {a a' : A} (f : A → B) (p : a = a') :
|
||
aps f (vrefl p) = vrefl (ap f p) :=
|
||
by induction p; reflexivity
|
||
|
||
definition aps_hrfl {A B : Type} {a a' : A} (f : A → B) (p : a = a') :
|
||
aps f (hrefl p) = hrefl (ap f p) :=
|
||
by induction p; reflexivity
|
||
|
||
-- should the following two equalities be cubes?
|
||
definition natural_square_ap_fn {A B C : Type} {a a' : A} {g h : A → B} (f : B → C) (p : g ~ h)
|
||
(q : a = a') : natural_square (λa, ap f (p a)) q =
|
||
ap_compose f g q ⬝ph (aps f (natural_square p q) ⬝hp (ap_compose f h q)⁻¹) :=
|
||
begin
|
||
induction q, exact !aps_vrfl⁻¹
|
||
end
|
||
|
||
definition natural_square_compose {A B C : Type} {a a' : A} {g g' : B → C}
|
||
(p : g ~ g') (f : A → B) (q : a = a') : natural_square (λa, p (f a)) q =
|
||
ap_compose g f q ⬝ph (natural_square p (ap f q) ⬝hp (ap_compose g' f q)⁻¹) :=
|
||
by induction q; reflexivity
|
||
|
||
definition natural_square_eq2 {A B : Type} {a a' : A} {f f' : A → B} (p : f ~ f') {q q' : a = a'}
|
||
(r : q = q') : natural_square p q = ap02 f r ⬝ph (natural_square p q' ⬝hp (ap02 f' r)⁻¹) :=
|
||
by induction r; reflexivity
|
||
|
||
definition natural_square_refl {A B : Type} {a a' : A} (f : A → B) (q : a = a')
|
||
: natural_square (homotopy.refl f) q = hrfl :=
|
||
by induction q; reflexivity
|
||
|
||
definition aps_eq_hconcat {p₀₁'} (f : A → B) (q : p₀₁' = p₀₁) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) :
|
||
aps f (q ⬝ph s₁₁) = ap02 f q ⬝ph aps f s₁₁ :=
|
||
by induction q; reflexivity
|
||
|
||
definition aps_hconcat_eq {p₂₁'} (f : A → B) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁' = p₂₁) :
|
||
aps f (s₁₁ ⬝hp r⁻¹) = aps f s₁₁ ⬝hp (ap02 f r)⁻¹ :=
|
||
by induction r; reflexivity
|
||
|
||
definition aps_hconcat_eq' {p₂₁'} (f : A → B) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁ = p₂₁') :
|
||
aps f (s₁₁ ⬝hp r) = aps f s₁₁ ⬝hp ap02 f r :=
|
||
by induction r; reflexivity
|
||
|
||
definition aps_square_of_eq (f : A → B) (s : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂) :
|
||
aps f (square_of_eq s) = square_of_eq ((ap_con f p₁₀ p₂₁)⁻¹ ⬝ ap02 f s ⬝ ap_con f p₀₁ p₁₂) :=
|
||
by induction p₁₂; esimp at *; induction s; induction p₂₁; induction p₁₀; reflexivity
|
||
|
||
definition aps_eq_hconcat_eq {p₀₁' p₂₁'} (f : A → B) (q : p₀₁' = p₀₁) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
|
||
(r : p₂₁' = p₂₁) : aps f (q ⬝ph s₁₁ ⬝hp r⁻¹) = ap02 f q ⬝ph aps f s₁₁ ⬝hp (ap02 f r)⁻¹ :=
|
||
by induction q; induction r; reflexivity
|
||
|
||
end
|
||
|
||
section -- cubes
|
||
|
||
variables {A B : Type} {a₀₀₀ a₂₀₀ a₀₂₀ a₂₂₀ a₀₀₂ a₂₀₂ a₀₂₂ a₂₂₂ a a' : A}
|
||
{p₁₀₀ : a₀₀₀ = a₂₀₀} {p₀₁₀ : a₀₀₀ = a₀₂₀} {p₀₀₁ : a₀₀₀ = a₀₀₂}
|
||
{p₁₂₀ : a₀₂₀ = a₂₂₀} {p₂₁₀ : a₂₀₀ = a₂₂₀} {p₂₀₁ : a₂₀₀ = a₂₀₂}
|
||
{p₁₀₂ : a₀₀₂ = a₂₀₂} {p₀₁₂ : a₀₀₂ = a₀₂₂} {p₀₂₁ : a₀₂₀ = a₀₂₂}
|
||
{p₁₂₂ : a₀₂₂ = a₂₂₂} {p₂₁₂ : a₂₀₂ = a₂₂₂} {p₂₂₁ : a₂₂₀ = a₂₂₂}
|
||
{s₀₁₁ : square p₀₁₀ p₀₁₂ p₀₀₁ p₀₂₁}
|
||
{s₂₁₁ : square p₂₁₀ p₂₁₂ p₂₀₁ p₂₂₁}
|
||
{s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁}
|
||
{s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁}
|
||
{s₁₁₀ : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀}
|
||
{s₁₁₂ : square p₀₁₂ p₂₁₂ p₁₀₂ p₁₂₂}
|
||
{b₁ b₂ b₃ b₄ : B}
|
||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂)
|
||
|
||
definition whisker001 {p₀₀₁' : a₀₀₀ = a₀₀₂} (q : p₀₀₁' = p₀₀₁)
|
||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube (q ⬝ph s₀₁₁) s₂₁₁ (q ⬝ph s₁₀₁) s₁₂₁ s₁₁₀ s₁₁₂ :=
|
||
by induction q; exact c
|
||
|
||
definition whisker021 {p₀₂₁' : a₀₂₀ = a₀₂₂} (q : p₀₂₁' = p₀₂₁)
|
||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||
cube (s₀₁₁ ⬝hp q⁻¹) s₂₁₁ s₁₀₁ (q ⬝ph s₁₂₁) s₁₁₀ s₁₁₂ :=
|
||
by induction q; exact c
|
||
|
||
definition whisker021' {p₀₂₁' : a₀₂₀ = a₀₂₂} (q : p₀₂₁ = p₀₂₁')
|
||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||
cube (s₀₁₁ ⬝hp q) s₂₁₁ s₁₀₁ (q⁻¹ ⬝ph s₁₂₁) s₁₁₀ s₁₁₂ :=
|
||
by induction q; exact c
|
||
|
||
definition whisker201 {p₂₀₁' : a₂₀₀ = a₂₀₂} (q : p₂₀₁' = p₂₀₁)
|
||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||
cube s₀₁₁ (q ⬝ph s₂₁₁) (s₁₀₁ ⬝hp q⁻¹) s₁₂₁ s₁₁₀ s₁₁₂ :=
|
||
by induction q; exact c
|
||
|
||
definition whisker201' {p₂₀₁' : a₂₀₀ = a₂₀₂} (q : p₂₀₁ = p₂₀₁')
|
||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||
cube s₀₁₁ (q⁻¹ ⬝ph s₂₁₁) (s₁₀₁ ⬝hp q) s₁₂₁ s₁₁₀ s₁₁₂ :=
|
||
by induction q; exact c
|
||
|
||
definition whisker221 {p₂₂₁' : a₂₂₀ = a₂₂₂} (q : p₂₂₁ = p₂₂₁')
|
||
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube s₀₁₁ (s₂₁₁ ⬝hp q) s₁₀₁ (s₁₂₁ ⬝hp q) s₁₁₀ s₁₁₂ :=
|
||
by induction q; exact c
|
||
|
||
definition move221 {p₂₂₁' : a₂₂₀ = a₂₂₂} {s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁'} (q : p₂₂₁ = p₂₂₁')
|
||
(c : cube s₀₁₁ (s₂₁₁ ⬝hp q) s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||
cube s₀₁₁ s₂₁₁ s₁₀₁ (s₁₂₁ ⬝hp q⁻¹) s₁₁₀ s₁₁₂ :=
|
||
by induction q; exact c
|
||
|
||
definition move201 {p₂₀₁' : a₂₀₀ = a₂₀₂} {s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁'} (q : p₂₀₁' = p₂₀₁)
|
||
(c : cube s₀₁₁ (q ⬝ph s₂₁₁) s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
|
||
cube s₀₁₁ s₂₁₁ (s₁₀₁ ⬝hp q) s₁₂₁ s₁₁₀ s₁₁₂ :=
|
||
by induction q; exact c
|
||
|
||
end
|
||
|
||
definition ap_eq_ap010 {A B C : Type} (f : A → B → C) {a a' : A} (p : a = a') (b : B) :
|
||
ap (λa, f a b) p = ap010 f p b :=
|
||
by reflexivity
|
||
|
||
definition ap011_idp {A B C : Type} (f : A → B → C) {a a' : A} (p : a = a') (b : B) :
|
||
ap011 f p idp = ap010 f p b :=
|
||
by reflexivity
|
||
|
||
definition ap011_flip {A B C : Type} (f : A → B → C) {a a' : A} {b b' : B} (p : a = a') (q : b = b') :
|
||
ap011 f p q = ap011 (λb a, f a b) q p :=
|
||
by induction q; induction p; reflexivity
|
||
|
||
theorem apd_constant' {A A' : Type} {B : A' → Type} {a₁ a₂ : A} {a' : A'} (b : B a')
|
||
(p : a₁ = a₂) : apd (λx, b) p = pathover_of_eq p idp :=
|
||
by induction p; reflexivity
|
||
|
||
definition apo011 {A : Type} {B C D : A → Type} {a a' : A} {p : a = a'} {b : B a} {b' : B a'}
|
||
{c : C a} {c' : C a'} (f : Π⦃a⦄, B a → C a → D a) (q : b =[p] b') (r : c =[p] c') :
|
||
f b c =[p] f b' c' :=
|
||
begin induction q, induction r using idp_rec_on, exact idpo end
|
||
|
||
definition ap011_ap_square_right {A B C : Type} (f : A → B → C) {a a' : A} (p : a = a')
|
||
{b₁ b₂ b₃ : B} {q₁₂ : b₁ = b₂} {q₂₃ : b₂ = b₃} {q₁₃ : b₁ = b₃} (r : q₁₂ ⬝ q₂₃ = q₁₃) :
|
||
square (ap011 f p q₁₂) (ap (λx, f x b₃) p) (ap (f a) q₁₃) (ap (f a') q₂₃) :=
|
||
by induction r; induction q₂₃; induction q₁₂; induction p; exact ids
|
||
|
||
definition ap011_ap_square_left {A B C : Type} (f : B → A → C) {a a' : A} (p : a = a')
|
||
{b₁ b₂ b₃ : B} {q₁₂ : b₁ = b₂} {q₂₃ : b₂ = b₃} {q₁₃ : b₁ = b₃} (r : q₁₂ ⬝ q₂₃ = q₁₃) :
|
||
square (ap011 f q₁₂ p) (ap (f b₃) p) (ap (λx, f x a) q₁₃) (ap (λx, f x a') q₂₃) :=
|
||
by induction r; induction q₂₃; induction q₁₂; induction p; exact ids
|
||
|
||
definition ap_ap011 {A B C D : Type} (g : C → D) (f : A → B → C) {a a' : A} {b b' : B}
|
||
(p : a = a') (q : b = b') : ap g (ap011 f p q) = ap011 (λa b, g (f a b)) p q :=
|
||
begin
|
||
induction p, exact (ap_compose g (f a) q)⁻¹
|
||
end
|
||
|
||
definition con2_assoc {A : Type} {x y z t : A} {p p' : x = y} {q q' : y = z} {r r' : z = t}
|
||
(h : p = p') (h' : q = q') (h'' : r = r') :
|
||
square ((h ◾ h') ◾ h'') (h ◾ (h' ◾ h'')) (con.assoc p q r) (con.assoc p' q' r') :=
|
||
by induction h; induction h'; induction h''; exact hrfl
|
||
|
||
definition con_left_inv_idp {A : Type} {x : A} {p : x = x} (q : p = idp)
|
||
: con.left_inv p = q⁻² ◾ q :=
|
||
by cases q; reflexivity
|
||
|
||
definition eckmann_hilton_con2 {A : Type} {x : A} {p p' q q': idp = idp :> x = x}
|
||
(h : p = p') (h' : q = q') : square (h ◾ h') (h' ◾ h) (eckmann_hilton p q) (eckmann_hilton p' q') :=
|
||
by induction h; induction h'; exact hrfl
|
||
|
||
definition ap_con_fn {A B : Type} {a a' : A} {b : B} (g h : A → b = b) (p : a = a') :
|
||
ap (λa, g a ⬝ h a) p = ap g p ◾ ap h p :=
|
||
by induction p; reflexivity
|
||
|
||
protected definition homotopy.rfl [reducible] [unfold_full] {A B : Type} {f : A → B} : f ~ f :=
|
||
homotopy.refl f
|
||
|
||
definition compose_id {A B : Type} (f : A → B) : f ∘ id ~ f :=
|
||
by reflexivity
|
||
|
||
definition id_compose {A B : Type} (f : A → B) : id ∘ f ~ f :=
|
||
by reflexivity
|
||
|
||
-- move to eq2
|
||
definition ap_eq_ap011 {A B C X : Type} (f : A → B → C) (g : X → A) (h : X → B) {x x' : X}
|
||
(p : x = x') : ap (λx, f (g x) (h x)) p = ap011 f (ap g p) (ap h p) :=
|
||
by induction p; reflexivity
|
||
|
||
definition ap_is_weakly_constant {A B : Type} {f : A → B}
|
||
(h : is_weakly_constant f) {a a' : A} (p : a = a') : ap f p = (h a a)⁻¹ ⬝ h a a' :=
|
||
by induction p; exact !con.left_inv⁻¹
|
||
|
||
definition ap_is_constant_idp {A B : Type} {f : A → B} {b : B} (p : Πa, f a = b) {a : A} (q : a = a)
|
||
(r : q = idp) : ap_is_constant p q = ap02 f r ⬝ (con.right_inv (p a))⁻¹ :=
|
||
by cases r; exact !idp_con⁻¹
|
||
|
||
definition con_right_inv_natural {A : Type} {a a' : A} {p p' : a = a'} (q : p = p') :
|
||
con.right_inv p = q ◾ q⁻² ⬝ con.right_inv p' :=
|
||
by induction q; induction p; reflexivity
|
||
|
||
definition whisker_right_ap {A B : Type} {a a' : A}{b₁ b₂ b₃ : B} (q : b₂ = b₃) (f : A → b₁ = b₂)
|
||
(p : a = a') : whisker_right q (ap f p) = ap (λa, f a ⬝ q) p :=
|
||
by induction p; reflexivity
|
||
|
||
infix ` ⬝hty `:75 := homotopy.trans
|
||
postfix `⁻¹ʰᵗʸ`:(max+1) := homotopy.symm
|
||
|
||
definition hassoc {A B C D : Type} (h : C → D) (g : B → C) (f : A → B) : (h ∘ g) ∘ f ~ h ∘ (g ∘ f) :=
|
||
λa, idp
|
||
|
||
-- to algebra.homotopy_group
|
||
definition homotopy_group_homomorphism_pcompose (n : ℕ) [H : is_succ n] {A B C : Type*} (g : B →* C)
|
||
(f : A →* B) : π→g[n] (g ∘* f) ~ π→g[n] g ∘ π→g[n] f :=
|
||
begin
|
||
induction H with n, exact to_homotopy (homotopy_group_functor_compose (succ n) g f)
|
||
end
|
||
|
||
definition apn_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) :
|
||
Ω→[n] f⁻¹ᵉ* ~* (loopn_pequiv_loopn n f)⁻¹ᵉ* :=
|
||
begin
|
||
refine !to_pinv_pequiv_MK2⁻¹*
|
||
end
|
||
|
||
-- definition homotopy_group_homomorphism_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) :
|
||
-- π→g[n+1] f⁻¹ᵉ* ~ (homotopy_group_isomorphism_of_pequiv n f)⁻¹ᵍ :=
|
||
-- begin
|
||
-- -- refine ptrunc_functor_phomotopy 0 !apn_pinv ⬝hty _,
|
||
-- -- intro x, esimp,
|
||
-- end
|
||
|
||
-- definition natural_square_tr_eq {A B : Type} {a a' : A} {f g : A → B}
|
||
-- (p : f ~ g) (q : a = a') : natural_square p q = square_of_pathover (apd p q) :=
|
||
-- idp
|
||
|
||
definition inv_homotopy_inv {A B : Type} {f g : A → B} [is_equiv f] [is_equiv g]
|
||
(p : f ~ g) : f⁻¹ ~ g⁻¹ :=
|
||
λa, inv_eq_of_eq (p (g⁻¹ a) ⬝ right_inv g a)⁻¹
|
||
|
||
definition to_inv_homotopy_inv {A B : Type} {f g : A ≃ B}
|
||
(p : f ~ g) : f⁻¹ ~ g⁻¹ :=
|
||
inv_homotopy_inv p
|
||
|
||
definition compose2 {A B C : Type} {g g' : B → C} {f f' : A → B}
|
||
(p : g ~ g') (q : f ~ f') : g ∘ f ~ g' ∘ f' :=
|
||
hwhisker_right f p ⬝hty hwhisker_left g' q
|
||
|
||
section hsquare
|
||
variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type}
|
||
{f₁₀ : A₀₀ → A₂₀} {f₃₀ : A₂₀ → A₄₀}
|
||
{f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {f₄₁ : A₄₀ → A₄₂}
|
||
{f₁₂ : A₀₂ → A₂₂} {f₃₂ : A₂₂ → A₄₂}
|
||
{f₀₃ : A₀₂ → A₀₄} {f₂₃ : A₂₂ → A₂₄} {f₄₃ : A₄₂ → A₄₄}
|
||
{f₁₄ : A₀₄ → A₂₄} {f₃₄ : A₂₄ → A₄₄}
|
||
|
||
definition hsquare [reducible] (f₁₀ : A₀₀ → A₂₀) (f₁₂ : A₀₂ → A₂₂)
|
||
(f₀₁ : A₀₀ → A₀₂) (f₂₁ : A₂₀ → A₂₂) : Type :=
|
||
f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁
|
||
|
||
definition hsquare_of_homotopy (p : f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁) : hsquare f₁₀ f₁₂ f₀₁ f₂₁ :=
|
||
p
|
||
|
||
definition homotopy_of_hsquare (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) : f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁ :=
|
||
p
|
||
|
||
definition homotopy_top_of_hsquare {f₂₁ : A₂₀ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
f₁₀ ~ f₂₁⁻¹ ∘ f₁₂ ∘ f₀₁ :=
|
||
homotopy_inv_of_homotopy_post _ _ _ p
|
||
|
||
definition homotopy_top_of_hsquare' [is_equiv f₂₁] (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
f₁₀ ~ f₂₁⁻¹ ∘ f₁₂ ∘ f₀₁ :=
|
||
homotopy_inv_of_homotopy_post _ _ _ p
|
||
|
||
definition hhconcat (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) :
|
||
hsquare (f₃₀ ∘ f₁₀) (f₃₂ ∘ f₁₂) f₀₁ f₄₁ :=
|
||
hwhisker_right f₁₀ q ⬝hty hwhisker_left f₃₂ p
|
||
|
||
definition hvconcat (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (q : hsquare f₁₂ f₁₄ f₀₃ f₂₃) :
|
||
hsquare f₁₀ f₁₄ (f₀₃ ∘ f₀₁) (f₂₃ ∘ f₂₁) :=
|
||
(hhconcat p⁻¹ʰᵗʸ q⁻¹ʰᵗʸ)⁻¹ʰᵗʸ
|
||
|
||
definition hhinverse {f₁₀ : A₀₀ ≃ A₂₀} {f₁₂ : A₀₂ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
hsquare f₁₀⁻¹ᵉ f₁₂⁻¹ᵉ f₂₁ f₀₁ :=
|
||
λb, eq_inv_of_eq ((p (f₁₀⁻¹ᵉ b))⁻¹ ⬝ ap f₂₁ (to_right_inv f₁₀ b))
|
||
|
||
definition hvinverse {f₀₁ : A₀₀ ≃ A₀₂} {f₂₁ : A₂₀ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
hsquare f₁₂ f₁₀ f₀₁⁻¹ᵉ f₂₁⁻¹ᵉ :=
|
||
(hhinverse p⁻¹ʰᵗʸ)⁻¹ʰᵗʸ
|
||
|
||
infix ` ⬝htyh `:73 := hhconcat
|
||
infix ` ⬝htyv `:73 := hvconcat
|
||
postfix `⁻¹ʰᵗʸʰ`:(max+1) := hhinverse
|
||
postfix `⁻¹ʰᵗʸᵛ`:(max+1) := hvinverse
|
||
|
||
end hsquare
|
||
-- move to init.funext
|
||
protected definition homotopy.rec_on_idp_left [recursor] {A : Type} {P : A → Type} {g : Πa, P a}
|
||
{Q : Πf, (f ~ g) → Type} {f : Π x, P x}
|
||
(p : f ~ g) (H : Q g (homotopy.refl g)) : Q f p :=
|
||
begin
|
||
induction p using homotopy.rec_on, induction q, exact H
|
||
end
|
||
|
||
--eq2 (duplicate of ap_compose_ap02_constant)
|
||
definition ap02_ap_constant {A B C : Type} {a a' : A} (f : B → C) (b : B) (p : a = a') :
|
||
square (ap_constant p (f b)) (ap02 f (ap_constant p b)) (ap_compose f (λx, b) p) idp :=
|
||
by induction p; exact ids
|
||
|
||
definition ap_constant_compose {A B C : Type} {a a' : A} (c : C) (f : A → B) (p : a = a') :
|
||
square (ap_constant p c) (ap_constant (ap f p) c) (ap_compose (λx, c) f p) idp :=
|
||
by induction p; exact ids
|
||
|
||
definition ap02_constant {A B : Type} {a a' : A} (b : B) {p p' : a = a'}
|
||
(q : p = p') : square (ap_constant p b) (ap_constant p' b) (ap02 (λx, b) q) idp :=
|
||
by induction q; exact vrfl
|
||
|
||
end eq open eq
|
||
|
||
namespace wedge
|
||
open pushout unit
|
||
protected definition glue (A B : Type*) : inl pt = inr pt :> wedge A B :=
|
||
pushout.glue ⋆
|
||
|
||
end wedge
|
||
|
||
namespace nat
|
||
|
||
definition iterate_succ {A : Type} (f : A → A) (n : ℕ) (x : A) :
|
||
f^[succ n] x = f^[n] (f x) :=
|
||
by induction n with n p; reflexivity; exact ap f p
|
||
|
||
lemma iterate_sub {A : Type} (f : A ≃ A) {n m : ℕ} (h : n ≥ m) (a : A) :
|
||
iterate f (n - m) a = iterate f n (iterate f⁻¹ m a) :=
|
||
begin
|
||
revert n h, induction m with m p: intro n h,
|
||
{ reflexivity },
|
||
{ cases n with n, exfalso, apply not_succ_le_zero _ h,
|
||
rewrite [succ_sub_succ], refine p n (le_of_succ_le_succ h) ⬝ _,
|
||
refine ap (f^[n]) _ ⬝ !iterate_succ⁻¹, exact !to_right_inv⁻¹ }
|
||
end
|
||
|
||
definition iterate_commute {A : Type} {f g : A → A} (n : ℕ) (h : f ∘ g ~ g ∘ f) :
|
||
iterate f n ∘ g ~ g ∘ iterate f n :=
|
||
by induction n with n IH; reflexivity; exact λx, ap f (IH x) ⬝ !h
|
||
|
||
definition iterate_equiv {A : Type} (f : A ≃ A) (n : ℕ) : A ≃ A :=
|
||
equiv.mk (iterate f n)
|
||
(by induction n with n IH; apply is_equiv_id; exact is_equiv_compose f (iterate f n))
|
||
|
||
definition iterate_inv {A : Type} (f : A ≃ A) (n : ℕ) :
|
||
(iterate_equiv f n)⁻¹ ~ iterate f⁻¹ n :=
|
||
begin
|
||
induction n with n p: intro a,
|
||
reflexivity,
|
||
exact p (f⁻¹ a) ⬝ !iterate_succ⁻¹
|
||
end
|
||
|
||
definition iterate_left_inv {A : Type} (f : A ≃ A) (n : ℕ) (a : A) : f⁻¹ᵉ^[n] (f^[n] a) = a :=
|
||
(iterate_inv f n (f^[n] a))⁻¹ ⬝ to_left_inv (iterate_equiv f n) a
|
||
|
||
definition iterate_right_inv {A : Type} (f : A ≃ A) (n : ℕ) (a : A) : f^[n] (f⁻¹ᵉ^[n] a) = a :=
|
||
ap (f^[n]) (iterate_inv f n a)⁻¹ ⬝ to_right_inv (iterate_equiv f n) a
|
||
|
||
end nat
|
||
|
||
namespace pi
|
||
|
||
definition is_contr_pi_of_neg {A : Type} (B : A → Type) (H : ¬ A) : is_contr (Πa, B a) :=
|
||
begin
|
||
apply is_contr.mk (λa, empty.elim (H a)), intro f, apply eq_of_homotopy, intro x, contradiction
|
||
end
|
||
end pi
|
||
|
||
namespace trunc
|
||
|
||
-- TODO: redefine loopn_ptrunc_pequiv
|
||
definition apn_ptrunc_functor (n : ℕ₋₂) (k : ℕ) {A B : Type*} (f : A →* B) :
|
||
Ω→[k] (ptrunc_functor (n+k) f) ∘* (loopn_ptrunc_pequiv n k A)⁻¹ᵉ* ~*
|
||
(loopn_ptrunc_pequiv n k B)⁻¹ᵉ* ∘* ptrunc_functor n (Ω→[k] f) :=
|
||
begin
|
||
revert n, induction k with k IH: intro n,
|
||
{ reflexivity },
|
||
{ exact sorry }
|
||
end
|
||
|
||
definition ptrunc_pequiv_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc n A]
|
||
[is_trunc n B] : f ∘* ptrunc_pequiv n A ~* ptrunc_pequiv n B ∘* ptrunc_functor n f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, induction a with a, reflexivity },
|
||
{ refine !idp_con ⬝ _ ⬝ !idp_con⁻¹, refine !ap_compose'⁻¹ ⬝ _, apply ap_id }
|
||
end
|
||
|
||
definition ptr_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) :
|
||
ptrunc_functor n f ∘* ptr n A ~* ptr n B ∘* f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, reflexivity },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition ptrunc_elim_pcompose (n : ℕ₋₂) {A B C : Type*} (g : B →* C) (f : A →* B) [is_trunc n B]
|
||
[is_trunc n C] : ptrunc.elim n (g ∘* f) ~* g ∘* ptrunc.elim n f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, induction a with a, reflexivity },
|
||
{ apply idp_con }
|
||
end
|
||
|
||
end trunc
|
||
|
||
namespace is_equiv
|
||
|
||
definition inv_homotopy_inv {A B : Type} {f g : A → B} [is_equiv f] [is_equiv g] (p : f ~ g)
|
||
: f⁻¹ ~ g⁻¹ :=
|
||
λb, (left_inv g (f⁻¹ b))⁻¹ ⬝ ap g⁻¹ ((p (f⁻¹ b))⁻¹ ⬝ right_inv f b)
|
||
|
||
definition to_inv_homotopy_to_inv {A B : Type} {f g : A ≃ B} (p : f ~ g) : f⁻¹ᵉ ~ g⁻¹ᵉ :=
|
||
inv_homotopy_inv p
|
||
|
||
end is_equiv
|
||
|
||
namespace prod
|
||
|
||
definition pprod_functor [constructor] {A B C D : Type*} (f : A →* C) (g : B →* D) : A ×* B →* C ×* D :=
|
||
pmap.mk (prod_functor f g) (prod_eq (respect_pt f) (respect_pt g))
|
||
|
||
open prod.ops
|
||
definition prod_pathover_equiv {A : Type} {B C : A → Type} {a a' : A} (p : a = a')
|
||
(x : B a × C a) (x' : B a' × C a') : x =[p] x' ≃ x.1 =[p] x'.1 × x.2 =[p] x'.2 :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro q, induction q, constructor: constructor },
|
||
{ intro v, induction v with q r, exact prod_pathover _ _ _ q r },
|
||
{ intro v, induction v with q r, induction x with b c, induction x' with b' c',
|
||
esimp at *, induction q, refine idp_rec_on r _, reflexivity },
|
||
{ intro q, induction q, induction x with b c, reflexivity }
|
||
end
|
||
|
||
end prod open prod
|
||
|
||
namespace sigma
|
||
|
||
-- set_option pp.notation false
|
||
-- set_option pp.binder_types true
|
||
|
||
open sigma.ops
|
||
definition pathover_pr1 [unfold 9] {A : Type} {B : A → Type} {C : Πa, B a → Type}
|
||
{a a' : A} {p : a = a'} {x : Σb, C a b} {x' : Σb', C a' b'}
|
||
(q : x =[p] x') : x.1 =[p] x'.1 :=
|
||
begin induction q, constructor end
|
||
|
||
definition is_prop_elimo_self {A : Type} (B : A → Type) {a : A} (b : B a) {H : is_prop (B a)} :
|
||
@is_prop.elimo A B a a idp b b H = idpo :=
|
||
!is_prop.elim
|
||
|
||
definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} (C : Πa, B a → Type)
|
||
{a a' : A} (p : a = a') (x : Σb, C a b) (x' : Σb', C a' b')
|
||
[Πa b, is_prop (C a b)] : x =[p] x' ≃ x.1 =[p] x'.1 :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ exact pathover_pr1 },
|
||
{ intro q, induction x with b c, induction x' with b' c', esimp at q, induction q,
|
||
apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo },
|
||
{ intro q, induction x with b c, induction x' with b' c', esimp at q, induction q,
|
||
have c = c', from !is_prop.elim, induction this,
|
||
rewrite [▸*, is_prop_elimo_self (C a) c] },
|
||
{ intro q, induction q, induction x with b c, rewrite [▸*, is_prop_elimo_self (C a) c] }
|
||
end
|
||
|
||
definition sigma_ua {A B : Type} (C : A ≃ B → Type) :
|
||
(Σ(p : A = B), C (equiv_of_eq p)) ≃ Σ(e : A ≃ B), C e :=
|
||
sigma_equiv_sigma_left' !eq_equiv_equiv
|
||
|
||
-- definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} {C : Πa, B a → Type}
|
||
-- {a a' : A} {p : a = a'} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'}
|
||
-- [Πa b, is_prop (C a b)] : ⟨b, c⟩ =[p] ⟨b', c'⟩ ≃ b =[p] b' :=
|
||
-- begin
|
||
-- fapply equiv.MK,
|
||
-- { exact pathover_pr1 },
|
||
-- { intro q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo },
|
||
-- { intro q, induction q,
|
||
-- have c = c', from !is_prop.elim, induction this,
|
||
-- rewrite [▸*, is_prop_elimo_self (C a) c] },
|
||
-- { esimp, generalize ⟨b, c⟩, intro x q, }
|
||
-- end
|
||
--rexact @(ap pathover_pr1) _ idpo _,
|
||
|
||
end sigma open sigma
|
||
|
||
namespace pointed
|
||
|
||
definition phomotopy_of_homotopy {X Y : Type*} {f g : X →* Y} (h : f ~ g) [is_set Y] : f ~* g :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ exact h },
|
||
{ apply is_set.elim }
|
||
end
|
||
|
||
end pointed open pointed
|
||
|
||
namespace group
|
||
open is_trunc algebra
|
||
|
||
definition to_fun_isomorphism_trans {G H K : Group} (φ : G ≃g H) (ψ : H ≃g K) :
|
||
φ ⬝g ψ ~ ψ ∘ φ :=
|
||
by reflexivity
|
||
|
||
definition add_homomorphism (G H : AddGroup) : Type := homomorphism G H
|
||
infix ` →a `:55 := add_homomorphism
|
||
|
||
definition agroup_fun [coercion] [unfold 3] [reducible] {G H : AddGroup} (φ : G →a H) : G → H :=
|
||
φ
|
||
|
||
definition add_homomorphism.struct [instance] {G H : AddGroup} (φ : G →a H) : is_add_hom φ :=
|
||
homomorphism.addstruct φ
|
||
|
||
definition add_homomorphism.mk [constructor] {G H : AddGroup} (φ : G → H) (h : is_add_hom φ) : G →g H :=
|
||
homomorphism.mk φ h
|
||
|
||
definition add_homomorphism_compose [constructor] [trans] {G₁ G₂ G₃ : AddGroup}
|
||
(ψ : G₂ →a G₃) (φ : G₁ →a G₂) : G₁ →a G₃ :=
|
||
add_homomorphism.mk (ψ ∘ φ) (is_add_hom_compose _ _)
|
||
|
||
definition add_homomorphism_id [constructor] [refl] (G : AddGroup) : G →a G :=
|
||
add_homomorphism.mk (@id G) (is_add_hom_id G)
|
||
|
||
abbreviation aid [constructor] := @add_homomorphism_id
|
||
infixr ` ∘a `:75 := add_homomorphism_compose
|
||
|
||
definition to_respect_add' {H₁ H₂ : AddGroup} (χ : H₁ →a H₂) (g h : H₁) : χ (g + h) = χ g + χ h :=
|
||
respect_add χ g h
|
||
|
||
theorem to_respect_zero' {H₁ H₂ : AddGroup} (χ : H₁ →a H₂) : χ 0 = 0 :=
|
||
respect_zero χ
|
||
|
||
theorem to_respect_neg' {H₁ H₂ : AddGroup} (χ : H₁ →a H₂) (g : H₁) : χ (-g) = -(χ g) :=
|
||
respect_neg χ g
|
||
|
||
definition homomorphism_add [constructor] {G H : AddAbGroup} (φ ψ : G →a H) : G →a H :=
|
||
add_homomorphism.mk (λg, φ g + ψ g)
|
||
abstract begin
|
||
intro g g', refine ap011 add !to_respect_add' !to_respect_add' ⬝ _,
|
||
refine !add.assoc ⬝ ap (add _) (!add.assoc⁻¹ ⬝ ap (λx, x + _) !add.comm ⬝ !add.assoc) ⬝ !add.assoc⁻¹
|
||
end end
|
||
|
||
definition homomorphism_mul [constructor] {G H : AbGroup} (φ ψ : G →g H) : G →g H :=
|
||
homomorphism.mk (λg, φ g * ψ g) (to_respect_add (homomorphism_add φ ψ))
|
||
|
||
definition pmap_of_homomorphism_gid (G : Group) : pmap_of_homomorphism (gid G) ~* pid G :=
|
||
begin
|
||
fapply phomotopy_of_homotopy, reflexivity
|
||
end
|
||
|
||
definition pmap_of_homomorphism_gcompose {G H K : Group} (ψ : H →g K) (φ : G →g H)
|
||
: pmap_of_homomorphism (ψ ∘g φ) ~* pmap_of_homomorphism ψ ∘* pmap_of_homomorphism φ :=
|
||
begin
|
||
fapply phomotopy_of_homotopy, reflexivity
|
||
end
|
||
|
||
definition pmap_of_homomorphism_phomotopy {G H : Group} {φ ψ : G →g H} (H : φ ~ ψ)
|
||
: pmap_of_homomorphism φ ~* pmap_of_homomorphism ψ :=
|
||
begin
|
||
fapply phomotopy_of_homotopy, exact H
|
||
end
|
||
|
||
definition pequiv_of_isomorphism_trans {G₁ G₂ G₃ : Group} (φ : G₁ ≃g G₂) (ψ : G₂ ≃g G₂) :
|
||
pequiv_of_isomorphism (φ ⬝g ψ) ~* pequiv_of_isomorphism ψ ∘* pequiv_of_isomorphism φ :=
|
||
begin
|
||
apply phomotopy_of_homotopy, reflexivity
|
||
end
|
||
|
||
definition isomorphism_eq {G H : Group} {φ ψ : G ≃g H} (p : φ ~ ψ) : φ = ψ :=
|
||
begin
|
||
induction φ with φ φe, induction ψ with ψ ψe,
|
||
exact apd011 isomorphism.mk (homomorphism_eq p) !is_prop.elimo
|
||
end
|
||
|
||
definition is_set_isomorphism [instance] (G H : Group) : is_set (G ≃g H) :=
|
||
begin
|
||
have H : G ≃g H ≃ Σ(f : G →g H), is_equiv f,
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro φ, induction φ, constructor, assumption },
|
||
{ intro v, induction v, constructor, assumption },
|
||
{ intro v, induction v, reflexivity },
|
||
{ intro φ, induction φ, reflexivity }
|
||
end,
|
||
apply is_trunc_equiv_closed_rev, exact H
|
||
end
|
||
|
||
definition is_equiv_mul_right [constructor] {A : Group} (a : A) : is_equiv (λb, b * a) :=
|
||
adjointify _ (λb : A, b * a⁻¹) (λb, !inv_mul_cancel_right) (λb, !mul_inv_cancel_right)
|
||
|
||
definition right_action [constructor] {A : Group} (a : A) : A ≃ A :=
|
||
equiv.mk _ (is_equiv_mul_right a)
|
||
|
||
definition is_equiv_add_right [constructor] {A : AddGroup} (a : A) : is_equiv (λb, b + a) :=
|
||
adjointify _ (λb : A, b - a) (λb, !neg_add_cancel_right) (λb, !add_neg_cancel_right)
|
||
|
||
definition add_right_action [constructor] {A : AddGroup} (a : A) : A ≃ A :=
|
||
equiv.mk _ (is_equiv_add_right a)
|
||
|
||
section
|
||
variables {A B : Type} (f : A ≃ B) [ab_group A]
|
||
definition group_equiv_mul_comm (b b' : B) : group_equiv_mul f b b' = group_equiv_mul f b' b :=
|
||
by rewrite [↑group_equiv_mul, mul.comm]
|
||
|
||
definition ab_group_equiv_closed : ab_group B :=
|
||
⦃ab_group, group_equiv_closed f,
|
||
mul_comm := group_equiv_mul_comm f⦄
|
||
end
|
||
|
||
definition ab_group_of_is_contr (A : Type) [is_contr A] : ab_group A :=
|
||
have ab_group unit, from ab_group_unit,
|
||
ab_group_equiv_closed (equiv_unit_of_is_contr A)⁻¹ᵉ
|
||
|
||
definition group_of_is_contr (A : Type) [is_contr A] : group A :=
|
||
have ab_group A, from ab_group_of_is_contr A, by apply _
|
||
|
||
definition ab_group_lift_unit : ab_group (lift unit) :=
|
||
ab_group_of_is_contr (lift unit)
|
||
|
||
definition trivial_ab_group_lift : AbGroup :=
|
||
AbGroup.mk _ ab_group_lift_unit
|
||
|
||
definition homomorphism_of_is_contr_right (A : Group) {B : Type} (H : is_contr B) :
|
||
A →g Group.mk B (group_of_is_contr B) :=
|
||
group.homomorphism.mk (λa, center _) (λa a', !is_prop.elim)
|
||
|
||
open trunc pointed is_conn
|
||
definition ab_group_homotopy_group_of_is_conn (n : ℕ) (A : Type*) [H : is_conn 1 A] :
|
||
ab_group (π[n] A) :=
|
||
begin
|
||
have is_conn 0 A, from !is_conn_of_is_conn_succ,
|
||
cases n with n,
|
||
{ unfold [homotopy_group, ptrunc], apply ab_group_of_is_contr },
|
||
cases n with n,
|
||
{ unfold [homotopy_group, ptrunc], apply ab_group_of_is_contr },
|
||
exact ab_group_homotopy_group n A
|
||
end
|
||
|
||
|
||
-- definition is_equiv_isomorphism
|
||
|
||
|
||
-- some extra instances for type class inference
|
||
-- definition is_mul_hom_comm_homomorphism [instance] {G G' : AbGroup} (φ : G →g G')
|
||
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G))
|
||
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
|
||
-- homomorphism.struct φ
|
||
|
||
-- definition is_mul_hom_comm_homomorphism1 [instance] {G G' : AbGroup} (φ : G →g G')
|
||
-- : @is_mul_hom G G' _
|
||
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
|
||
-- homomorphism.struct φ
|
||
|
||
-- definition is_mul_hom_comm_homomorphism2 [instance] {G G' : AbGroup} (φ : G →g G')
|
||
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) _ φ :=
|
||
-- homomorphism.struct φ
|
||
|
||
end group open group
|
||
|
||
namespace function
|
||
variables {A B : Type} {f f' : A → B}
|
||
definition is_embedding_homotopy_closed (p : f ~ f') (H : is_embedding f) : is_embedding f' :=
|
||
begin
|
||
intro a a', fapply is_equiv_of_equiv_of_homotopy,
|
||
exact equiv.mk (ap f) _ ⬝e equiv_eq_closed_left _ (p a) ⬝e equiv_eq_closed_right _ (p a'),
|
||
intro q, esimp, exact (eq_bot_of_square (transpose (natural_square p q)))⁻¹
|
||
end
|
||
|
||
definition is_embedding_homotopy_closed_rev (p : f' ~ f) (H : is_embedding f) : is_embedding f' :=
|
||
is_embedding_homotopy_closed p⁻¹ʰᵗʸ H
|
||
|
||
definition is_surjective_homotopy_closed (p : f ~ f') (H : is_surjective f) : is_surjective f' :=
|
||
begin
|
||
intro b, induction H b with a q,
|
||
exact image.mk a ((p a)⁻¹ ⬝ q)
|
||
end
|
||
|
||
definition is_surjective_homotopy_closed_rev (p : f' ~ f) (H : is_surjective f) :
|
||
is_surjective f' :=
|
||
is_surjective_homotopy_closed p⁻¹ʰᵗʸ H
|
||
|
||
end function
|
||
|
||
namespace fiber
|
||
open pointed
|
||
|
||
definition pcompose_ppoint {A B : Type*} (f : A →* B) : f ∘* ppoint f ~* pconst (pfiber f) B :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ exact point_eq },
|
||
{ exact !idp_con⁻¹ }
|
||
end
|
||
|
||
definition point_fiber_eq {A B : Type} {f : A → B} {b : B} {x y : fiber f b}
|
||
(p : point x = point y) (q : point_eq x = ap f p ⬝ point_eq y) :
|
||
ap point (fiber_eq p q) = p :=
|
||
begin
|
||
induction x with a r, induction y with a' s, esimp at *, induction p,
|
||
induction q using eq.rec_symm, induction s, reflexivity
|
||
end
|
||
|
||
definition fiber_eq_equiv_fiber {A B : Type} {f : A → B} {b : B} (x y : fiber f b) :
|
||
x = y ≃ fiber (ap1_gen f (point_eq x) (point_eq y)) (idpath b) :=
|
||
calc
|
||
x = y ≃ fiber.sigma_char f b x = fiber.sigma_char f b y :
|
||
eq_equiv_fn_eq_of_equiv (fiber.sigma_char f b) x y
|
||
... ≃ Σ(p : point x = point y), point_eq x =[p] point_eq y : sigma_eq_equiv
|
||
... ≃ Σ(p : point x = point y), (point_eq x)⁻¹ ⬝ ap f p ⬝ point_eq y = idp :
|
||
sigma_equiv_sigma_right (λp,
|
||
calc point_eq x =[p] point_eq y ≃ point_eq x = ap f p ⬝ point_eq y : eq_pathover_equiv_Fl
|
||
... ≃ ap f p ⬝ point_eq y = point_eq x : eq_equiv_eq_symm
|
||
... ≃ (point_eq x)⁻¹ ⬝ (ap f p ⬝ point_eq y) = idp : eq_equiv_inv_con_eq_idp
|
||
... ≃ (point_eq x)⁻¹ ⬝ ap f p ⬝ point_eq y = idp : equiv_eq_closed_left _ !con.assoc⁻¹)
|
||
... ≃ fiber (ap1_gen f (point_eq x) (point_eq y)) (idpath b) : fiber.sigma_char
|
||
|
||
definition loop_pfiber [constructor] {A B : Type*} (f : A →* B) : Ω (pfiber f) ≃* pfiber (Ω→ f) :=
|
||
pequiv_of_equiv (fiber_eq_equiv_fiber pt pt)
|
||
begin
|
||
induction f with f f₀, induction B with B b₀, esimp at (f,f₀), induction f₀, reflexivity
|
||
end
|
||
|
||
definition point_fiber_eq_equiv_fiber {A B : Type} {f : A → B} {b : B} {x y : fiber f b}
|
||
(p : x = y) : point (fiber_eq_equiv_fiber x y p) = ap1_gen point idp idp p :=
|
||
by induction p; reflexivity
|
||
|
||
lemma ppoint_loop_pfiber {A B : Type*} (f : A →* B) :
|
||
ppoint (Ω→ f) ∘* loop_pfiber f ~* Ω→ (ppoint f) :=
|
||
phomotopy.mk (point_fiber_eq_equiv_fiber)
|
||
begin
|
||
induction f with f f₀, induction B with B b₀, esimp at (f,f₀), induction f₀, reflexivity
|
||
end
|
||
|
||
lemma ppoint_loop_pfiber_inv {A B : Type*} (f : A →* B) :
|
||
Ω→ (ppoint f) ∘* (loop_pfiber f)⁻¹ᵉ* ~* ppoint (Ω→ f) :=
|
||
(phomotopy_pinv_right_of_phomotopy (ppoint_loop_pfiber f))⁻¹*
|
||
|
||
lemma pfiber_equiv_of_phomotopy_ppoint {A B : Type*} {f g : A →* B} (h : f ~* g)
|
||
: ppoint g ∘* pfiber_equiv_of_phomotopy h ~* ppoint f :=
|
||
begin
|
||
induction f with f f₀, induction g with g g₀, induction h with h h₀, induction B with B b₀,
|
||
esimp at *, induction h₀, induction g₀,
|
||
fapply phomotopy.mk,
|
||
{ reflexivity },
|
||
{ esimp [pfiber_equiv_of_phomotopy], exact !point_fiber_eq⁻¹ }
|
||
end
|
||
|
||
lemma pequiv_postcompose_ppoint {A B B' : Type*} (f : A →* B) (g : B ≃* B')
|
||
: ppoint f ∘* fiber.pequiv_postcompose f g ~* ppoint (g ∘* f) :=
|
||
begin
|
||
induction f with f f₀, induction g with g hg g₀, induction B with B b₀,
|
||
induction B' with B' b₀', esimp at *, induction g₀, induction f₀,
|
||
fapply phomotopy.mk,
|
||
{ reflexivity },
|
||
{ esimp [pequiv_postcompose], symmetry,
|
||
refine !ap_compose⁻¹ ⬝ _, apply ap_constant }
|
||
end
|
||
|
||
lemma pequiv_precompose_ppoint {A A' B : Type*} (f : A →* B) (g : A' ≃* A)
|
||
: ppoint f ∘* fiber.pequiv_precompose f g ~* g ∘* ppoint (f ∘* g) :=
|
||
begin
|
||
induction f with f f₀, induction g with g hg g₀, induction B with B b₀,
|
||
induction A with A a₀', esimp at *, induction g₀, induction f₀,
|
||
reflexivity,
|
||
end
|
||
|
||
definition pfiber_equiv_of_square_ppoint {A B C D : Type*} {f : A →* B} {g : C →* D}
|
||
(h : A ≃* C) (k : B ≃* D) (s : k ∘* f ~* g ∘* h)
|
||
: ppoint g ∘* pfiber_equiv_of_square h k s ~* h ∘* ppoint f :=
|
||
begin
|
||
refine !passoc⁻¹* ⬝* _,
|
||
refine pwhisker_right _ !pequiv_precompose_ppoint ⬝* _,
|
||
refine !passoc ⬝* _,
|
||
apply pwhisker_left,
|
||
refine !passoc⁻¹* ⬝* _,
|
||
refine pwhisker_right _ !pfiber_equiv_of_phomotopy_ppoint ⬝* _,
|
||
apply pinv_right_phomotopy_of_phomotopy,
|
||
refine !pequiv_postcompose_ppoint⁻¹*,
|
||
end
|
||
|
||
end fiber
|
||
|
||
namespace is_trunc
|
||
|
||
definition center' {A : Type} (H : is_contr A) : A := center A
|
||
|
||
definition pequiv_punit_of_is_contr [constructor] (A : Type*) (H : is_contr A) : A ≃* punit :=
|
||
pequiv_of_equiv (equiv_unit_of_is_contr A) (@is_prop.elim unit _ _ _)
|
||
|
||
definition pequiv_punit_of_is_contr' [constructor] (A : Type) (H : is_contr A)
|
||
: pointed.MK A (center A) ≃* punit :=
|
||
pequiv_punit_of_is_contr (pointed.MK A (center A)) H
|
||
|
||
|
||
definition is_trunc_is_contr_fiber [instance] [priority 900] (n : ℕ₋₂) {A B : Type} (f : A → B)
|
||
(b : B) [is_trunc n A] [is_trunc n B] : is_trunc n (is_contr (fiber f b)) :=
|
||
begin
|
||
cases n,
|
||
{ apply is_contr_of_inhabited_prop, apply is_contr_fun_of_is_equiv,
|
||
apply is_equiv_of_is_contr },
|
||
{ apply is_trunc_succ_of_is_prop }
|
||
end
|
||
|
||
end is_trunc
|
||
|
||
namespace is_conn
|
||
|
||
open unit trunc_index nat is_trunc pointed.ops
|
||
|
||
definition is_contr_of_trivial_homotopy' (n : ℕ₋₂) (A : Type) [is_trunc n A] [is_conn -1 A]
|
||
(H : Πk a, is_contr (π[k] (pointed.MK A a))) : is_contr A :=
|
||
begin
|
||
assert aa : trunc -1 A,
|
||
{ apply center },
|
||
assert H3 : is_conn 0 A,
|
||
{ induction aa with a, exact H 0 a },
|
||
exact is_contr_of_trivial_homotopy n A H
|
||
end
|
||
|
||
-- don't make is_prop_is_trunc an instance
|
||
definition is_trunc_succ_is_trunc [instance] (n m : ℕ₋₂) (A : Type) : is_trunc (n.+1) (is_trunc m A) :=
|
||
is_trunc_of_le _ !minus_one_le_succ
|
||
|
||
definition is_conn_of_trivial_homotopy (n : ℕ₋₂) (m : ℕ) (A : Type) [is_trunc n A] [is_conn 0 A]
|
||
(H : Π(k : ℕ) a, k ≤ m → is_contr (π[k] (pointed.MK A a))) : is_conn m A :=
|
||
begin
|
||
apply is_contr_of_trivial_homotopy_nat m (trunc m A),
|
||
intro k a H2,
|
||
induction a with a,
|
||
apply is_trunc_equiv_closed_rev,
|
||
exact equiv_of_pequiv (homotopy_group_trunc_of_le (pointed.MK A a) _ _ H2),
|
||
exact H k a H2
|
||
end
|
||
|
||
definition is_conn_of_trivial_homotopy_pointed (n : ℕ₋₂) (m : ℕ) (A : Type*) [is_trunc n A]
|
||
(H : Π(k : ℕ), k ≤ m → is_contr (π[k] A)) : is_conn m A :=
|
||
begin
|
||
have is_conn 0 A, proof H 0 !zero_le qed,
|
||
apply is_conn_of_trivial_homotopy n m A,
|
||
intro k a H2, revert a, apply is_conn.elim -1,
|
||
cases A with A a, exact H k H2
|
||
end
|
||
|
||
end is_conn
|
||
|
||
namespace circle
|
||
|
||
/-
|
||
Suppose for `f, g : A -> B` I prove a homotopy `H : f ~ g` by induction on the element in `A`.
|
||
And suppose `p : a = a'` is a path constructor in `A`.
|
||
Then `natural_square_tr H p` has type `square (H a) (H a') (ap f p) (ap g p)` and is equal
|
||
to the square which defined H on the path constructor
|
||
-/
|
||
|
||
definition natural_square_elim_loop {A : Type} {f g : S¹ → A} (p : f base = g base)
|
||
(q : square p p (ap f loop) (ap g loop))
|
||
: natural_square (circle.rec p (eq_pathover q)) loop = q :=
|
||
begin
|
||
-- refine !natural_square_eq ⬝ _,
|
||
refine ap square_of_pathover !rec_loop ⬝ _,
|
||
exact to_right_inv !eq_pathover_equiv_square q
|
||
end
|
||
|
||
definition circle_elim_constant [unfold 5] {A : Type} {a : A} {p : a = a} (r : p = idp) (x : S¹) :
|
||
circle.elim a p x = a :=
|
||
begin
|
||
induction x,
|
||
{ reflexivity },
|
||
{ apply eq_pathover_constant_right, apply hdeg_square, exact !elim_loop ⬝ r }
|
||
end
|
||
|
||
|
||
|
||
end circle
|
||
|
||
namespace susp
|
||
|
||
definition loop_psusp_intro_natural {X Y Z : Type*} (g : psusp Y →* Z) (f : X →* Y) :
|
||
loop_psusp_intro (g ∘* psusp_functor f) ~* loop_psusp_intro g ∘* f :=
|
||
pwhisker_right _ !ap1_pcompose ⬝* !passoc ⬝* pwhisker_left _ !loop_psusp_unit_natural⁻¹* ⬝*
|
||
!passoc⁻¹*
|
||
|
||
definition psusp_functor_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) :
|
||
psusp_functor f ~* psusp_functor g :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro x, induction x,
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ apply eq_pathover, apply hdeg_square, esimp, refine !elim_merid ⬝ _ ⬝ !elim_merid⁻¹ᵖ,
|
||
exact ap merid (p a), }},
|
||
{ reflexivity },
|
||
end
|
||
|
||
definition psusp_functor_pid (A : Type*) : psusp_functor (pid A) ~* pid (psusp A) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro x, induction x,
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ apply eq_pathover_id_right, apply hdeg_square, apply elim_merid }},
|
||
{ reflexivity },
|
||
end
|
||
|
||
definition psusp_functor_pcompose {A B C : Type*} (g : B →* C) (f : A →* B) :
|
||
psusp_functor (g ∘* f) ~* psusp_functor g ∘* psusp_functor f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro x, induction x,
|
||
{ reflexivity },
|
||
{ reflexivity },
|
||
{ apply eq_pathover, apply hdeg_square, esimp,
|
||
refine !elim_merid ⬝ _ ⬝ (ap_compose (psusp_functor g) _ _)⁻¹ᵖ,
|
||
refine _ ⬝ ap02 _ !elim_merid⁻¹, exact !elim_merid⁻¹ }},
|
||
{ reflexivity },
|
||
end
|
||
|
||
definition psusp_elim_psusp_functor {A B C : Type*} (g : B →* Ω C) (f : A →* B) :
|
||
psusp.elim g ∘* psusp_functor f ~* psusp.elim (g ∘* f) :=
|
||
begin
|
||
refine !passoc ⬝* _, exact pwhisker_left _ !psusp_functor_pcompose⁻¹*
|
||
end
|
||
|
||
definition psusp_elim_phomotopy {A B : Type*} {f g : A →* Ω B} (p : f ~* g) : psusp.elim f ~* psusp.elim g :=
|
||
pwhisker_left _ (psusp_functor_phomotopy p)
|
||
|
||
definition psusp_elim_natural {X Y Z : Type*} (g : Y →* Z) (f : X →* Ω Y)
|
||
: g ∘* psusp.elim f ~* psusp.elim (Ω→ g ∘* f) :=
|
||
begin
|
||
refine _ ⬝* pwhisker_left _ !psusp_functor_pcompose⁻¹*,
|
||
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
|
||
exact pwhisker_right _ !loop_psusp_counit_natural
|
||
end
|
||
|
||
end susp
|
||
|
||
namespace category
|
||
|
||
-- replace precategory_group with precategory_Group (the former has a universe error)
|
||
definition precategory_Group.{u} [instance] [constructor] : precategory.{u+1 u} Group :=
|
||
begin
|
||
fapply precategory.mk,
|
||
{ exact λG H, G →g H },
|
||
{ exact _ },
|
||
{ exact λG H K ψ φ, ψ ∘g φ },
|
||
{ exact λG, gid G },
|
||
{ intros, apply homomorphism_eq, esimp },
|
||
{ intros, apply homomorphism_eq, esimp },
|
||
{ intros, apply homomorphism_eq, esimp }
|
||
end
|
||
|
||
|
||
definition precategory_AbGroup.{u} [instance] [constructor] : precategory.{u+1 u} AbGroup :=
|
||
begin
|
||
fapply precategory.mk,
|
||
{ exact λG H, G →g H },
|
||
{ exact _ },
|
||
{ exact λG H K ψ φ, ψ ∘g φ },
|
||
{ exact λG, gid G },
|
||
{ intros, apply homomorphism_eq, esimp },
|
||
{ intros, apply homomorphism_eq, esimp },
|
||
{ intros, apply homomorphism_eq, esimp }
|
||
end
|
||
open iso
|
||
definition Group_is_iso_of_is_equiv {G H : Group} (φ : G →g H) (H : is_equiv (group_fun φ)) :
|
||
is_iso φ :=
|
||
begin
|
||
fconstructor,
|
||
{ exact (isomorphism.mk φ H)⁻¹ᵍ },
|
||
{ apply homomorphism_eq, rexact left_inv φ },
|
||
{ apply homomorphism_eq, rexact right_inv φ }
|
||
end
|
||
|
||
definition Group_is_equiv_of_is_iso {G H : Group} (φ : G ⟶ H) (Hφ : is_iso φ) :
|
||
is_equiv (group_fun φ) :=
|
||
begin
|
||
fapply adjointify,
|
||
{ exact group_fun φ⁻¹ʰ },
|
||
{ note p := right_inverse φ, exact ap010 group_fun p },
|
||
{ note p := left_inverse φ, exact ap010 group_fun p }
|
||
end
|
||
|
||
definition Group_iso_equiv (G H : Group) : (G ≅ H) ≃ (G ≃g H) :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro φ, induction φ with φ φi, constructor, exact Group_is_equiv_of_is_iso φ _ },
|
||
{ intro v, induction v with φ φe, constructor, exact Group_is_iso_of_is_equiv φ _ },
|
||
{ intro v, induction v with φ φe, apply isomorphism_eq, reflexivity },
|
||
{ intro φ, induction φ with φ φi, apply iso_eq, reflexivity }
|
||
end
|
||
|
||
definition Group_props.{u} {A : Type.{u}} (v : (A → A → A) × (A → A) × A) : Prop.{u} :=
|
||
begin
|
||
induction v with m v, induction v with i o,
|
||
fapply trunctype.mk,
|
||
{ exact is_set A × (Πa, m a o = a) × (Πa, m o a = a) × (Πa b c, m (m a b) c = m a (m b c)) ×
|
||
(Πa, m (i a) a = o) },
|
||
{ apply is_trunc_of_imp_is_trunc, intro v, induction v with H v,
|
||
have is_prop (Πa, m a o = a), from _,
|
||
have is_prop (Πa, m o a = a), from _,
|
||
have is_prop (Πa b c, m (m a b) c = m a (m b c)), from _,
|
||
have is_prop (Πa, m (i a) a = o), from _,
|
||
apply is_trunc_prod }
|
||
end
|
||
|
||
definition Group.sigma_char2.{u} : Group.{u} ≃
|
||
Σ(A : Type.{u}) (v : (A → A → A) × (A → A) × A), Group_props v :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro G, refine ⟨G, _⟩, induction G with G g, induction g with m s ma o om mo i mi,
|
||
repeat (fconstructor; do 2 try assumption), },
|
||
{ intro v, induction v with x v, induction v with y v, repeat induction y with x y,
|
||
repeat induction v with x v, constructor, fconstructor, repeat assumption },
|
||
{ intro v, induction v with x v, induction v with y v, repeat induction y with x y,
|
||
repeat induction v with x v, reflexivity },
|
||
{ intro v, repeat induction v with x v, reflexivity },
|
||
end
|
||
open is_trunc
|
||
|
||
section
|
||
local attribute group.to_has_mul group.to_has_inv [coercion]
|
||
|
||
theorem inv_eq_of_mul_eq {A : Type} (G H : group A) (p : @mul A G ~2 @mul A H) :
|
||
@inv A G ~ @inv A H :=
|
||
begin
|
||
have foo : Π(g : A), @inv A G g = (@inv A G g * g) * @inv A H g,
|
||
from λg, !mul_inv_cancel_right⁻¹,
|
||
cases G with Gs Gm Gh1 G1 Gh2 Gh3 Gi Gh4,
|
||
cases H with Hs Hm Hh1 H1 Hh2 Hh3 Hi Hh4,
|
||
change Gi ~ Hi, intro g, have p' : Gm ~2 Hm, from p,
|
||
calc
|
||
Gi g = Hm (Hm (Gi g) g) (Hi g) : foo
|
||
... = Hm (Gm (Gi g) g) (Hi g) : by rewrite p'
|
||
... = Hm G1 (Hi g) : by rewrite Gh4
|
||
... = Gm G1 (Hi g) : by rewrite p'
|
||
... = Hi g : Gh2
|
||
end
|
||
|
||
theorem one_eq_of_mul_eq {A : Type} (G H : group A)
|
||
(p : @mul A (group.to_has_mul G) ~2 @mul A (group.to_has_mul H)) :
|
||
@one A (group.to_has_one G) = @one A (group.to_has_one H) :=
|
||
begin
|
||
cases G with Gm Gs Gh1 G1 Gh2 Gh3 Gi Gh4,
|
||
cases H with Hm Hs Hh1 H1 Hh2 Hh3 Hi Hh4,
|
||
exact (Hh2 G1)⁻¹ ⬝ (p H1 G1)⁻¹ ⬝ Gh3 H1,
|
||
end
|
||
end
|
||
|
||
open prod.ops
|
||
definition group_of_Group_props.{u} {A : Type.{u}} {m : A → A → A} {i : A → A} {o : A}
|
||
(H : Group_props (m, (i, o))) : group A :=
|
||
⦃group, mul := m, inv := i, one := o, is_set_carrier := H.1,
|
||
mul_one := H.2.1, one_mul := H.2.2.1, mul_assoc := H.2.2.2.1, mul_left_inv := H.2.2.2.2⦄
|
||
|
||
theorem Group_eq_equiv_lemma2 {A : Type} {m m' : A → A → A} {i i' : A → A} {o o' : A}
|
||
(H : Group_props (m, (i, o))) (H' : Group_props (m', (i', o'))) :
|
||
(m, (i, o)) = (m', (i', o')) ≃ (m ~2 m') :=
|
||
begin
|
||
have is_set A, from pr1 H,
|
||
apply equiv_of_is_prop,
|
||
{ intro p, exact apd100 (eq_pr1 p)},
|
||
{ intro p, apply prod_eq (eq_of_homotopy2 p),
|
||
apply prod_eq: esimp [Group_props] at *; esimp,
|
||
{ apply eq_of_homotopy,
|
||
exact inv_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p },
|
||
{ exact one_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p }}
|
||
end
|
||
|
||
open sigma.ops
|
||
|
||
theorem Group_eq_equiv_lemma {G H : Group}
|
||
(p : (Group.sigma_char2 G).1 = (Group.sigma_char2 H).1) :
|
||
((Group.sigma_char2 G).2 =[p] (Group.sigma_char2 H).2) ≃
|
||
(is_mul_hom (equiv_of_eq (proof p qed : Group.carrier G = Group.carrier H))) :=
|
||
begin
|
||
refine !sigma_pathover_equiv_of_is_prop ⬝e _,
|
||
induction G with G g, induction H with H h,
|
||
esimp [Group.sigma_char2] at p, induction p,
|
||
refine !pathover_idp ⬝e _,
|
||
induction g with s m ma o om mo i mi, induction h with σ μ μa ε εμ με ι μι,
|
||
exact Group_eq_equiv_lemma2 (Group.sigma_char2 (Group.mk G (group.mk s m ma o om mo i mi))).2.2
|
||
(Group.sigma_char2 (Group.mk G (group.mk σ μ μa ε εμ με ι μι))).2.2
|
||
end
|
||
|
||
definition isomorphism.sigma_char (G H : Group) : (G ≃g H) ≃ Σ(e : G ≃ H), is_mul_hom e :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro φ, exact ⟨equiv_of_isomorphism φ, to_respect_mul φ⟩ },
|
||
{ intro v, induction v with e p, exact isomorphism_of_equiv e p },
|
||
{ intro v, induction v with e p, induction e, reflexivity },
|
||
{ intro φ, induction φ with φ H, induction φ, reflexivity },
|
||
end
|
||
|
||
definition Group_eq_equiv (G H : Group) : G = H ≃ (G ≃g H) :=
|
||
begin
|
||
refine (eq_equiv_fn_eq_of_equiv Group.sigma_char2 G H) ⬝e _,
|
||
refine !sigma_eq_equiv ⬝e _,
|
||
refine sigma_equiv_sigma_right Group_eq_equiv_lemma ⬝e _,
|
||
transitivity (Σ(e : (Group.sigma_char2 G).1 ≃ (Group.sigma_char2 H).1),
|
||
@is_mul_hom _ _ _ _ (to_fun e)), apply sigma_ua,
|
||
exact !isomorphism.sigma_char⁻¹ᵉ
|
||
end
|
||
|
||
definition to_fun_Group_eq_equiv {G H : Group} (p : G = H)
|
||
: Group_eq_equiv G H p ~ isomorphism_of_eq p :=
|
||
begin
|
||
induction p, reflexivity
|
||
end
|
||
|
||
definition Group_eq2 {G H : Group} {p q : G = H}
|
||
(r : isomorphism_of_eq p ~ isomorphism_of_eq q) : p = q :=
|
||
begin
|
||
apply eq_of_fn_eq_fn (Group_eq_equiv G H),
|
||
apply isomorphism_eq,
|
||
intro g, refine to_fun_Group_eq_equiv p g ⬝ r g ⬝ (to_fun_Group_eq_equiv q g)⁻¹,
|
||
end
|
||
|
||
definition Group_eq_equiv_Group_iso (G₁ G₂ : Group) : G₁ = G₂ ≃ G₁ ≅ G₂ :=
|
||
Group_eq_equiv G₁ G₂ ⬝e (Group_iso_equiv G₁ G₂)⁻¹ᵉ
|
||
|
||
definition category_Group.{u} : category Group.{u} :=
|
||
category.mk precategory_Group
|
||
begin
|
||
intro G H,
|
||
apply is_equiv_of_equiv_of_homotopy (Group_eq_equiv_Group_iso G H),
|
||
intro p, induction p, fapply iso_eq, apply homomorphism_eq, reflexivity
|
||
end
|
||
|
||
definition category_AbGroup : category AbGroup :=
|
||
category.mk precategory_AbGroup sorry
|
||
|
||
definition Grp.{u} [constructor] : Category := category.Mk Group.{u} category_Group
|
||
definition AbGrp [constructor] : Category := category.Mk AbGroup category_AbGroup
|
||
|
||
end category
|
||
|
||
namespace sphere
|
||
|
||
definition psphere_pequiv_iterate_psusp (n : ℕ) : psphere n ≃* iterate_psusp n pbool :=
|
||
begin
|
||
induction n with n e,
|
||
{ exact psphere_pequiv_pbool },
|
||
{ exact psusp_pequiv e }
|
||
end
|
||
|
||
-- definition constant_sphere_map_sphere {n m : ℕ} (H : n < m) (f : S* n →* S* m) :
|
||
-- f ~* pconst (S* n) (S* m) :=
|
||
-- begin
|
||
-- assert H : is_contr (Ω[n] (S* m)),
|
||
-- { apply homotopy_group_sphere_le, },
|
||
-- apply phomotopy_of_eq,
|
||
-- apply eq_of_fn_eq_fn !psphere_pmap_pequiv,
|
||
-- apply @is_prop.elim
|
||
-- end
|
||
|
||
end sphere
|
||
|
||
definition image_pathover {A B : Type} (f : A → B) {x y : B} (p : x = y) (u : image f x) (v : image f y) : u =[p] v :=
|
||
begin
|
||
apply is_prop.elimo
|
||
end
|
||
|
||
section injective_surjective
|
||
open trunc fiber image
|
||
|
||
variables {A B C : Type} [is_set A] [is_set B] [is_set C] (f : A → B) (g : B → C) (h : A → C) (H : g ∘ f ~ h)
|
||
include H
|
||
|
||
definition is_embedding_factor : is_embedding h → is_embedding f :=
|
||
begin
|
||
induction H using homotopy.rec_on_idp,
|
||
intro E,
|
||
fapply is_embedding_of_is_injective,
|
||
intro x y p,
|
||
fapply @is_injective_of_is_embedding _ _ _ E _ _ (ap g p)
|
||
end
|
||
|
||
definition is_surjective_factor : is_surjective h → is_surjective g :=
|
||
begin
|
||
induction H using homotopy.rec_on_idp,
|
||
intro S,
|
||
intro c,
|
||
note p := S c,
|
||
induction p,
|
||
apply tr,
|
||
fapply fiber.mk,
|
||
exact f a,
|
||
exact p
|
||
end
|
||
|
||
end injective_surjective
|
||
|
||
definition AbGroup_of_Group.{u} (G : Group.{u}) (H : Π x y : G, x * y = y * x) : AbGroup.{u} :=
|
||
begin
|
||
induction G,
|
||
fapply AbGroup.mk,
|
||
assumption,
|
||
exact ⦃ab_group, struct, mul_comm := H⦄
|
||
end
|
||
|
||
definition trivial_ab_group : AbGroup.{0} :=
|
||
begin
|
||
fapply AbGroup_of_Group Trivial_group, intro x y, reflexivity
|
||
end
|
||
|
||
definition trivial_homomorphism (A B : AbGroup) : A →g B :=
|
||
begin
|
||
fapply homomorphism.mk,
|
||
exact λ a, 1,
|
||
intros, symmetry, exact one_mul 1,
|
||
end
|
||
|
||
definition from_trivial_ab_group (A : AbGroup) : trivial_ab_group →g A :=
|
||
trivial_homomorphism trivial_ab_group A
|
||
|
||
definition is_embedding_from_trivial_ab_group (A : AbGroup) : is_embedding (from_trivial_ab_group A) :=
|
||
begin
|
||
fapply is_embedding_of_is_injective,
|
||
intro x y p,
|
||
induction x, induction y, reflexivity
|
||
end
|
||
|
||
definition to_trivial_ab_group (A : AbGroup) : A →g trivial_ab_group :=
|
||
trivial_homomorphism A trivial_ab_group
|
||
|
||
/- Stuff added by Jeremy -/
|
||
|
||
definition exists.elim {A : Type} {p : A → Type} {B : Type} [is_prop B] (H : Exists p)
|
||
(H' : ∀ (a : A), p a → B) : B :=
|
||
trunc.elim (sigma.rec H') H
|
||
|
||
definition image.elim {A B : Type} {f : A → B} {C : Type} [is_prop C] {b : B}
|
||
(H : image f b) (H' : ∀ (a : A), f a = b → C) : C :=
|
||
begin
|
||
refine (trunc.elim _ H),
|
||
intro H'', cases H'' with a Ha, exact H' a Ha
|
||
end
|
||
|
||
definition image.intro {A B : Type} {f : A → B} {a : A} {b : B} (h : f a = b) : image f b :=
|
||
begin
|
||
apply trunc.merely.intro,
|
||
apply fiber.mk,
|
||
exact h
|
||
end
|
||
|
||
definition total_image {A B : Type} (f : A → B) : Type := sigma (image f)
|
||
local attribute is_prop.elim_set [recursor 6]
|
||
definition total_image.elim_set [unfold 8]
|
||
{A B : Type} {f : A → B} {C : Type} [is_set C]
|
||
(g : A → C) (h : Πa a', f a = f a' → g a = g a') (x : total_image f) : C :=
|
||
begin
|
||
induction x with b v,
|
||
induction v using is_prop.elim_set with x x x',
|
||
{ induction x with a p, exact g a },
|
||
{ induction x with a p, induction x' with a' p', induction p', exact h _ _ p }
|
||
end
|
||
|
||
definition total_image.rec [unfold 7]
|
||
{A B : Type} {f : A → B} {C : total_image f → Type} [H : Πx, is_prop (C x)]
|
||
(g : Πa, C ⟨f a, image.mk a idp⟩)
|
||
(x : total_image f) : C x :=
|
||
begin
|
||
induction x with b v,
|
||
refine @image.rec _ _ _ _ _ (λv, H ⟨b, v⟩) _ v,
|
||
intro a p,
|
||
induction p, exact g a
|
||
end
|
||
|
||
definition image.equiv_exists {A B : Type} {f : A → B} {b : B} : image f b ≃ ∃ a, f a = b :=
|
||
trunc_equiv_trunc _ (fiber.sigma_char _ _)
|
||
|
||
-- move to homomorphism.hlean
|
||
section
|
||
theorem eq_zero_of_eq_zero_of_is_embedding {A B : Type} [add_group A] [add_group B]
|
||
{f : A → B} [is_add_hom f] [is_embedding f] {a : A} (h : f a = 0) : a = 0 :=
|
||
have f a = f 0, by rewrite [h, respect_zero],
|
||
show a = 0, from is_injective_of_is_embedding this
|
||
end
|
||
|
||
/- put somewhere in algebra -/
|
||
|
||
structure Ring :=
|
||
(carrier : Type) (struct : ring carrier)
|
||
|
||
attribute Ring.carrier [coercion]
|
||
attribute Ring.struct [instance]
|
||
|
||
namespace int
|
||
|
||
definition ring_int : Ring :=
|
||
Ring.mk ℤ _
|
||
|
||
notation `rℤ` := ring_int
|
||
|
||
definition max0 : ℤ → ℕ
|
||
| (of_nat n) := n
|
||
| (-[1+ n]) := 0
|
||
|
||
lemma le_max0 : Π(n : ℤ), n ≤ of_nat (max0 n)
|
||
| (of_nat n) := proof le.refl n qed
|
||
| (-[1+ n]) := proof unit.star qed
|
||
|
||
lemma le_of_max0_le {n : ℤ} {m : ℕ} (h : max0 n ≤ m) : n ≤ of_nat m :=
|
||
le.trans (le_max0 n) (of_nat_le_of_nat_of_le h)
|
||
|
||
end int
|
||
|
||
namespace set_quotient
|
||
definition is_prop_set_quotient {A : Type} (R : A → A → Prop) [is_prop A] : is_prop (set_quotient R) :=
|
||
begin
|
||
apply is_prop.mk, intro x y,
|
||
induction x using set_quotient.rec_prop, induction y using set_quotient.rec_prop,
|
||
exact ap class_of !is_prop.elim
|
||
end
|
||
|
||
local attribute is_prop_set_quotient [instance]
|
||
definition is_trunc_set_quotient [instance] (n : ℕ₋₂) {A : Type} (R : A → A → Prop) [is_trunc n A] :
|
||
is_trunc n (set_quotient R) :=
|
||
begin
|
||
cases n with n, { apply is_contr_of_inhabited_prop, exact class_of !center },
|
||
cases n with n, { apply _ },
|
||
apply is_trunc_succ_succ_of_is_set
|
||
end
|
||
|
||
definition is_equiv_class_of [constructor] {A : Type} [is_set A] (R : A → A → Prop)
|
||
(p : Π⦃a b⦄, R a b → a = b) : is_equiv (@class_of A R) :=
|
||
begin
|
||
fapply adjointify,
|
||
{ intro x, induction x, exact a, exact p H },
|
||
{ intro x, induction x using set_quotient.rec_prop, reflexivity },
|
||
{ intro a, reflexivity }
|
||
end
|
||
|
||
definition equiv_set_quotient [constructor] {A : Type} [is_set A] (R : A → A → Prop)
|
||
(p : Π⦃a b⦄, R a b → a = b) : A ≃ set_quotient R :=
|
||
equiv.mk _ (is_equiv_class_of R p)
|
||
|
||
end set_quotient
|
||
|
||
-- should be in pushout
|
||
namespace pushout
|
||
variables {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
|
||
|
||
protected theorem elim_inl {P : Type} (Pinl : BL → P) (Pinr : TR → P)
|
||
(Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) {b b' : BL} (p : b = b')
|
||
: ap (pushout.elim Pinl Pinr Pglue) (ap inl p) = ap Pinl p :=
|
||
by cases p; reflexivity
|
||
|
||
protected theorem elim_inr {P : Type} (Pinl : BL → P) (Pinr : TR → P)
|
||
(Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) {b b' : TR} (p : b = b')
|
||
: ap (pushout.elim Pinl Pinr Pglue) (ap inr p) = ap Pinr p :=
|
||
by cases p; reflexivity
|
||
|
||
end pushout
|
||
|
||
-- should be in prod
|
||
namespace prod
|
||
open prod.ops
|
||
definition pair_eq_eta {A B : Type} {u v : A × B}
|
||
(p : u = v) : pair_eq (p..1) (p..2) = prod.eta u ⬝ p ⬝ (prod.eta v)⁻¹ :=
|
||
by induction p; induction u; reflexivity
|
||
|
||
definition prod_eq_eq {A B : Type} {u v : A × B}
|
||
{p₁ q₁ : u.1 = v.1} {p₂ q₂ : u.2 = v.2} (α₁ : p₁ = q₁) (α₂ : p₂ = q₂)
|
||
: prod_eq p₁ p₂ = prod_eq q₁ q₂ :=
|
||
by cases α₁; cases α₂; reflexivity
|
||
|
||
definition prod_eq_assemble {A B : Type} {u v : A × B}
|
||
{p q : u = v} (α₁ : p..1 = q..1) (α₂ : p..2 = q..2) : p = q :=
|
||
(prod_eq_eta p)⁻¹ ⬝ prod.prod_eq_eq α₁ α₂ ⬝ prod_eq_eta q
|
||
|
||
definition eq_pr1_concat {A B : Type} {u v w : A × B}
|
||
(p : u = v) (q : v = w)
|
||
: (p ⬝ q)..1 = p..1 ⬝ q..1 :=
|
||
by cases q; reflexivity
|
||
|
||
definition eq_pr2_concat {A B : Type} {u v w : A × B}
|
||
(p : u = v) (q : v = w)
|
||
: (p ⬝ q)..2 = p..2 ⬝ q..2 :=
|
||
by cases q; reflexivity
|
||
|
||
end prod
|