Spectral/homotopy/sample.hlean

194 lines
6.2 KiB
Text

/-
Copyright (c) 2015 Ulrik Buchholtz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ulrik Buchholtz
-/
import types.trunc types.arrow_2 types.fiber homotopy.susp
open eq is_trunc is_equiv nat equiv trunc function fiber
namespace homotopy
definition is_conn [reducible] (n : trunc_index) (A : Type) : Type :=
is_contr (trunc n A)
definition is_conn_equiv_closed (n : trunc_index) {A B : Type}
: A ≃ B → is_conn n A → is_conn n B :=
begin
intros H C,
fapply @is_contr_equiv_closed (trunc n A) _,
apply trunc_equiv_trunc,
assumption
end
definition is_conn_fun (n : trunc_index) {A B : Type} (f : A → B) : Type :=
Πb : B, is_conn n (fiber f b)
namespace is_conn_fun
section
parameters {n : trunc_index} {A B : Type} {h : A → B}
(H : is_conn_fun n h) (P : B → n -Type)
private definition helper : (Πa : A, P (h a)) → Πb : B, trunc n (fiber h b) → P b :=
λt b, trunc.rec (λx, point_eq x ▸ t (point x))
private definition g : (Πa : A, P (h a)) → (Πb : B, P b) :=
λt b, helper t b (@center (trunc n (fiber h b)) (H b))
-- induction principle for n-connected maps (Lemma 7.5.7)
definition rec : is_equiv (λs : Πb : B, P b, λa : A, s (h a)) :=
adjointify (λs a, s (h a)) g
begin
intro t, apply eq_of_homotopy, intro a, unfold g, unfold helper,
rewrite [@center_eq _ (H (h a)) (tr (fiber.mk a idp))],
end
begin
intro k, apply eq_of_homotopy, intro b, unfold g,
generalize (@center _ (H b)), apply trunc.rec, apply fiber.rec,
intros a p, induction p, reflexivity
end
definition elim : (Πa : A, P (h a)) → (Πb : B, P b) :=
@is_equiv.inv _ _ (λs a, s (h a)) rec
definition elim_β : Πf : (Πa : A, P (h a)), Πa : A, elim f (h a) = f a :=
λf, apd10 (@is_equiv.right_inv _ _ (λs a, s (h a)) rec f)
end
section
universe variables u v
parameters {n : trunc_index} {A : Type.{u}} {B : Type.{v}} {h : A → B}
parameter sec : ΠP : B → trunctype.{max u v} n,
is_retraction (λs : (Πb : B, P b), λ a, s (h a))
private definition s := sec (λb, trunctype.mk' n (trunc n (fiber h b)))
include sec
-- the other half of Lemma 7.5.7
definition intro : is_conn_fun n h :=
begin
intro b,
apply is_contr.mk (@is_retraction.sect _ _ _ s (λa, tr (fiber.mk a idp)) b),
esimp, apply trunc.rec, apply fiber.rec, intros a p,
apply transport
(λz : (Σy, h a = y), @sect _ _ _ s (λa, tr (mk a idp)) (sigma.pr1 z) =
tr (fiber.mk a (sigma.pr2 z)))
(@center_eq _ (is_contr_sigma_eq (h a)) (sigma.mk b p)),
exact apd10 (@right_inverse _ _ _ s (λa, tr (fiber.mk a idp))) a
end
end
end is_conn_fun
-- Connectedness is related to maps to and from the unit type, first to
section
parameters (n : trunc_index) (A : Type)
definition is_conn_of_map_to_unit
: is_conn_fun n (λx : A, unit.star) → is_conn n A :=
begin
intro H, unfold is_conn_fun at H,
rewrite [-(ua (fiber.fiber_star_equiv A))],
exact (H unit.star)
end
-- now maps from unit
definition is_conn_of_map_from_unit (a₀ : A) (H : is_conn_fun n (const unit a₀))
: is_conn n .+1 A :=
is_contr.mk (tr a₀)
begin
apply trunc.rec, intro a,
exact trunc.elim (λz : fiber (const unit a₀) a, ap tr (point_eq z))
(@center _ (H a))
end
definition is_conn_fun_from_unit (a₀ : A) [H : is_conn n .+1 A]
: is_conn_fun n (const unit a₀) :=
begin
intro a,
apply is_conn_equiv_closed n (equiv.symm (fiber_const_equiv A a₀ a)),
apply @is_contr_equiv_closed _ _ (tr_eq_tr_equiv n a₀ a),
end
end
-- Lemma 7.5.2
definition minus_one_conn_of_surjective {A B : Type} (f : A → B)
: is_surjective f → is_conn_fun -1 f :=
begin
intro H, intro b,
exact @is_contr_of_inhabited_prop (∥fiber f b∥) (is_trunc_trunc -1 (fiber f b)) (H b),
end
definition is_surjection_of_minus_one_conn {A B : Type} (f : A → B)
: is_conn_fun -1 f → is_surjective f :=
begin
intro H, intro b,
exact @center (∥fiber f b∥) (H b),
end
definition merely_of_minus_one_conn {A : Type} : is_conn -1 A → ∥A∥ :=
λH, @center (∥A∥) H
definition minus_one_conn_of_merely {A : Type} : ∥A∥ → is_conn -1 A :=
@is_contr_of_inhabited_prop (∥A∥) (is_trunc_trunc -1 A)
section
open arrow
variables {f g : arrow}
-- Lemma 7.5.4
definition retract_of_conn_is_conn [instance] (r : arrow_hom f g) [H : is_retraction r]
(n : trunc_index) [K : is_conn_fun n f] : is_conn_fun n g :=
begin
intro b, unfold is_conn,
apply is_contr_retract (trunc_functor n (retraction_on_fiber r b)),
exact K (on_cod (arrow.is_retraction.sect r) b)
end
end
-- Corollary 7.5.5
definition is_conn_homotopy (n : trunc_index) {A B : Type} {f g : A → B}
(p : f ~ g) (H : is_conn_fun n f) : is_conn_fun n g :=
@retract_of_conn_is_conn _ _ (arrow.arrow_hom_of_homotopy p) (arrow.is_retraction_arrow_hom_of_homotopy p) n H
-- all types are -2-connected
definition minus_two_conn [instance] (A : Type) : is_conn -2 A :=
_
-- Theorem 8.2.1
open susp
definition is_conn_susp [instance] (n : trunc_index) (A : Type)
[H : is_conn n A] : is_conn (n .+1) (susp A) :=
is_contr.mk (tr north)
begin
apply trunc.rec,
fapply susp.rec,
{ reflexivity },
{ exact (trunc.rec (λa, ap tr (merid a)) (center (trunc n A))) },
{ intro a,
generalize (center (trunc n A)),
apply trunc.rec,
intro a',
apply pathover_of_tr_eq,
rewrite [eq_transport_Fr,idp_con],
revert H, induction n with [n, IH],
{ intro H, apply is_prop.elim },
{ intros H,
change ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid a'),
generalize a',
apply is_conn_fun.elim
(is_conn_fun_from_unit n A a)
(λx : A, trunctype.mk' n (ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid x))),
intros,
change ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid a),
reflexivity
}
}
end
end homotopy