Spectral/homotopy/splice.hlean
2016-10-13 16:01:59 -04:00

112 lines
5 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Given a sequence of LES's, we want to splice them together.
... -> G_{1,k+1} -> G_{1,k} -> ... -> G_{1,1} -> G_{1,0}
... -> G_{2,k+1} -> G_{2,k} -> ... -> G_{2,1} -> G_{2,0}
...
... -> G_{n,k+1} -> G_{n,k} -> ... -> G_{n,1} -> G_{n,0}
...
If we have equivalences:
G_{n,m) = G_{n+1,m+k}
G_{n,m+1) = G_{n+1,m+k+1}
such that the evident squares commute, we can obtain a single sequence
... -> G_{n,m} -> G_{n+1,m+k-1} -> ... -> G_{n+1,m} -> G_{n+2,m+k-1} -> ...
However, in this formalization, we will only do this for k = 3, because we get more definitional
equalities in this specific case than in the general case. The reason is that we need to check
whether a term `x : fin (succ k)` represents `k`. If we do this in general using
if x = k then ... else ...
we don't get definitionally that x = k and the successor of x is 0, which means that when defining
maps G_{n,m} -> G_{n+1,m+k-1} we need to transport along those paths, which is annoying.
So far, the splicing seems to be only needed for k = 3, so it seems to be sufficient.
-/
import homotopy.chain_complex ..move_to_lib
open prod prod.ops succ_str fin pointed nat algebra eq is_trunc equiv is_equiv
/- fin -/
-- definition cyclic_pred {n : } (x : fin n) : fin n :=
-- begin
-- cases n with n,
-- { exfalso, apply not_lt_zero _ (is_lt x)},
-- { cases x with m H, cases m with m,
-- { exact fin.mk n !self_lt_succ},
-- { apply fin.mk m, exact lt.trans !self_lt_succ H}}
-- end
-- definition stratified_succ2 {N : succ_str} {n : } (x : stratified_type N n)
-- : stratified_type N n :=
-- (nat.cases_on (pr2 x) (S (pr1 x)) (λa, pr1 x), cyclic_pred (pr2 x))
-- definition stratified2 [reducible] [constructor] (N : succ_str) (n : ) : succ_str :=
-- succ_str.mk (stratified_type N n) stratified_succ2
namespace chain_complex
definition stratified_succ_max {N : succ_str} {n : } (x : stratified N n) (p : val (pr2 x) = n)
: S x = (S (pr1 x), 0) :=
begin
unfold [stratified, succ_str.S, stratified_succ],
apply prod_eq,
{ exact if_pos p},
{ exact dif_pos p}
end
definition splice_type [unfold 5] {N M : succ_str} (G : N → chain_complex M) (m : M)
(x : stratified N 2) : Set* :=
G x.1 (m +' val x.2)
definition splice_map {N M : succ_str} (G : N → chain_complex M) (m : M)
(e0 : Πn, G (S n) m ≃* G n (m +' 3)) :
Π(x : stratified N 2), splice_type G m (S x) →* splice_type G m x
| (n, fin.mk 0 H) := proof cc_to_fn (G n) m qed
| (n, fin.mk 1 H) := proof cc_to_fn (G n) (S m) qed
| (n, fin.mk 2 H) := proof cc_to_fn (G n) (S (S m)) ∘* e0 n qed
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition is_chain_complex_splice_map {N M : succ_str} (G : N → chain_complex M) (m : M)
(e0 : Πn, G (S n) m ≃* G n (m +' 3)) (e1 : Πn, G (S n) (S m) ≃* G n (S (m +' 3)))
(p : Πn, e0 n ∘* cc_to_fn (G (S n)) m ~ cc_to_fn (G n) (m +' 3) ∘* e1 n) :
Π(x : stratified N 2) (y : splice_type G m (S (S x))),
splice_map G m e0 x (splice_map G m e0 (S x) y) = pt
| (n, fin.mk 0 H) y := proof cc_is_chain_complex (G n) m y qed
| (n, fin.mk 1 H) y := proof cc_is_chain_complex (G n) (S m) (e0 n y) qed
| (n, fin.mk 2 H) y := proof ap (cc_to_fn (G n) (S (S m))) (p n y) ⬝
cc_is_chain_complex (G n) (S (S m)) (e1 n y) qed
| (n, fin.mk (k+3) H) y := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition splice [constructor] {N M : succ_str} (G : N → chain_complex M) (m : M)
(e0 : Πn, G (S n) m ≃* G n (m +' 3)) (e1 : Πn, G (S n) (S m) ≃* G n (S (m +' 3)))
(p : Πn, e0 n ∘* cc_to_fn (G (S n)) m ~ cc_to_fn (G n) (m +' 3) ∘* e1 n) :
chain_complex (stratified N 2) :=
chain_complex.mk (splice_type G m) (splice_map G m e0) (is_chain_complex_splice_map G m e0 e1 p)
definition is_exact_splice {N M : succ_str} (G : N → chain_complex M) (m : M)
(e0 : Πn, G (S n) m ≃* G n (m +' 3)) (e1 : Πn, G (S n) (S m) ≃* G n (S (m +' 3)))
(p : Πn, e0 n ∘* cc_to_fn (G (S n)) m ~ cc_to_fn (G n) (m +' 3) ∘* e1 n)
(H2 : Πn, is_exact (G n)) : Π(x : stratified N 2), is_exact_at (splice G m e0 e1 p) x
| (n, fin.mk 0 H) := proof H2 n m qed
| (n, fin.mk 1 H) := begin intro y q, induction H2 n (S m) proof y qed proof q qed with x r,
apply image.mk ((e0 n)⁻¹ᵉ x),
exact ap (pmap.to_fun (cc_to_fn (G n) (S (S m)))) (to_right_inv (e0 n) x) ⬝ r end
| (n, fin.mk 2 H) :=
begin intro y q, induction H2 n (S (S m)) proof e0 n y qed proof q qed with x r,
apply image.mk ((e1 n)⁻¹ᵉ x),
refine _ ⬝ to_left_inv (e0 n) y, refine _ ⬝ ap (e0 n)⁻¹ᵉ r, apply @eq_inv_of_eq _ _ (e0 n),
refine p n ((e1 n)⁻¹ᵉ x) ⬝ _, apply ap (cc_to_fn (G n) (m +' 3)), exact to_right_inv (e1 n) x
end
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
end chain_complex