Spectral/move_to_lib.hlean
2017-03-10 11:50:44 -05:00

1033 lines
41 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- definitions, theorems and attributes which should be moved to files in the HoTT library
import homotopy.sphere2 homotopy.cofiber homotopy.wedge
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
is_trunc function sphere unit sum prod
definition add_comm_right {A : Type} [add_comm_semigroup A] (n m k : A) : n + m + k = n + k + m :=
!add.assoc ⬝ ap (add n) !add.comm ⬝ !add.assoc⁻¹
namespace algebra
definition inf_group_loopn (n : ) (A : Type*) [H : is_succ n] : inf_group (Ω[n] A) :=
by induction H; exact _
definition one_unique {A : Type} [group A] {a : A} (H : Πb, a * b = b) : a = 1 :=
!mul_one⁻¹ ⬝ H 1
end algebra
namespace eq
section -- squares
variables {A B : Type} {a a' a'' a₀₀ a₂₀ a₄₀ a₀₂ a₂₂ a₂₄ a₀₄ a₄₂ a₄₄ a₁ a₂ a₃ a₄ : A}
/-a₀₀-/ {p₁₀ p₁₀' : a₀₀ = a₂₀} /-a₂₀-/ {p₃₀ : a₂₀ = a₄₀} /-a₄₀-/
{p₀₁ p₀₁' : a₀₀ = a₀₂} /-s₁₁-/ {p₂₁ p₂₁' : a₂₀ = a₂₂} /-s₃₁-/ {p₄₁ : a₄₀ = a₄₂}
/-a₀₂-/ {p₁₂ p₁₂' : a₀₂ = a₂₂} /-a₂₂-/ {p₃₂ : a₂₂ = a₄₂} /-a₄₂-/
{p₀₃ : a₀₂ = a₀₄} /-s₁₃-/ {p₂₃ : a₂₂ = a₂₄} /-s₃₃-/ {p₄₃ : a₄₂ = a₄₄}
/-a₀₄-/ {p₁₄ : a₀₄ = a₂₄} /-a₂₄-/ {p₃₄ : a₂₄ = a₄₄} /-a₄₄-/
variables {s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁} {s₃₁ : square p₃₀ p₃₂ p₂₁ p₄₁}
{s₁₃ : square p₁₂ p₁₄ p₀₃ p₂₃} {s₃₃ : square p₃₂ p₃₄ p₂₃ p₄₃}
definition natural_square_eq {A B : Type} {a a' : A} {f g : A → B} (p : f ~ g) (q : a = a')
: natural_square p q = square_of_pathover (apd p q) :=
idp
definition eq_of_square_hrfl_hconcat_eq {A : Type} {a a' : A} {p p' : a = a'} (q : p = p')
: eq_of_square (hrfl ⬝hp q⁻¹) = !idp_con ⬝ q :=
by induction q; induction p; reflexivity
definition aps_vrfl {A B : Type} {a a' : A} (f : A → B) (p : a = a') :
aps f (vrefl p) = vrefl (ap f p) :=
by induction p; reflexivity
definition aps_hrfl {A B : Type} {a a' : A} (f : A → B) (p : a = a') :
aps f (hrefl p) = hrefl (ap f p) :=
by induction p; reflexivity
-- should the following two equalities be cubes?
definition natural_square_ap_fn {A B C : Type} {a a' : A} {g h : A → B} (f : B → C) (p : g ~ h)
(q : a = a') : natural_square (λa, ap f (p a)) q =
ap_compose f g q ⬝ph (aps f (natural_square p q) ⬝hp (ap_compose f h q)⁻¹) :=
begin
induction q, exact !aps_vrfl⁻¹
end
definition natural_square_compose {A B C : Type} {a a' : A} {g g' : B → C}
(p : g ~ g') (f : A → B) (q : a = a') : natural_square (λa, p (f a)) q =
ap_compose g f q ⬝ph (natural_square p (ap f q) ⬝hp (ap_compose g' f q)⁻¹) :=
by induction q; reflexivity
definition natural_square_eq2 {A B : Type} {a a' : A} {f f' : A → B} (p : f ~ f') {q q' : a = a'}
(r : q = q') : natural_square p q = ap02 f r ⬝ph (natural_square p q' ⬝hp (ap02 f' r)⁻¹) :=
by induction r; reflexivity
definition natural_square_refl {A B : Type} {a a' : A} (f : A → B) (q : a = a')
: natural_square (homotopy.refl f) q = hrfl :=
by induction q; reflexivity
definition aps_eq_hconcat {p₀₁'} (f : A → B) (q : p₀₁' = p₀₁) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) :
aps f (q ⬝ph s₁₁) = ap02 f q ⬝ph aps f s₁₁ :=
by induction q; reflexivity
definition aps_hconcat_eq {p₂₁'} (f : A → B) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁' = p₂₁) :
aps f (s₁₁ ⬝hp r⁻¹) = aps f s₁₁ ⬝hp (ap02 f r)⁻¹ :=
by induction r; reflexivity
definition aps_hconcat_eq' {p₂₁'} (f : A → B) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁ = p₂₁') :
aps f (s₁₁ ⬝hp r) = aps f s₁₁ ⬝hp ap02 f r :=
by induction r; reflexivity
definition aps_square_of_eq (f : A → B) (s : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂) :
aps f (square_of_eq s) = square_of_eq ((ap_con f p₁₀ p₂₁)⁻¹ ⬝ ap02 f s ⬝ ap_con f p₀₁ p₁₂) :=
by induction p₁₂; esimp at *; induction s; induction p₂₁; induction p₁₀; reflexivity
definition aps_eq_hconcat_eq {p₀₁' p₂₁'} (f : A → B) (q : p₀₁' = p₀₁) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
(r : p₂₁' = p₂₁) : aps f (q ⬝ph s₁₁ ⬝hp r⁻¹) = ap02 f q ⬝ph aps f s₁₁ ⬝hp (ap02 f r)⁻¹ :=
by induction q; induction r; reflexivity
end
section -- cubes
variables {A B : Type} {a₀₀₀ a₂₀₀ a₀₂₀ a₂₂₀ a₀₀₂ a₂₀₂ a₀₂₂ a₂₂₂ a a' : A}
{p₁₀₀ : a₀₀₀ = a₂₀₀} {p₀₁₀ : a₀₀₀ = a₀₂₀} {p₀₀₁ : a₀₀₀ = a₀₀₂}
{p₁₂₀ : a₀₂₀ = a₂₂₀} {p₂₁₀ : a₂₀₀ = a₂₂₀} {p₂₀₁ : a₂₀₀ = a₂₀₂}
{p₁₀₂ : a₀₀₂ = a₂₀₂} {p₀₁₂ : a₀₀₂ = a₀₂₂} {p₀₂₁ : a₀₂₀ = a₀₂₂}
{p₁₂₂ : a₀₂₂ = a₂₂₂} {p₂₁₂ : a₂₀₂ = a₂₂₂} {p₂₂₁ : a₂₂₀ = a₂₂₂}
{s₀₁₁ : square p₀₁₀ p₀₁₂ p₀₀₁ p₀₂₁}
{s₂₁₁ : square p₂₁₀ p₂₁₂ p₂₀₁ p₂₂₁}
{s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁}
{s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁}
{s₁₁₀ : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀}
{s₁₁₂ : square p₀₁₂ p₂₁₂ p₁₀₂ p₁₂₂}
{b₁ b₂ b₃ b₄ : B}
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂)
definition whisker001 {p₀₀₁' : a₀₀₀ = a₀₀₂} (q : p₀₀₁' = p₀₀₁)
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube (q ⬝ph s₀₁₁) s₂₁₁ (q ⬝ph s₁₀₁) s₁₂₁ s₁₁₀ s₁₁₂ :=
by induction q; exact c
definition whisker021 {p₀₂₁' : a₀₂₀ = a₀₂₂} (q : p₀₂₁' = p₀₂₁)
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
cube (s₀₁₁ ⬝hp q⁻¹) s₂₁₁ s₁₀₁ (q ⬝ph s₁₂₁) s₁₁₀ s₁₁₂ :=
by induction q; exact c
definition whisker021' {p₀₂₁' : a₀₂₀ = a₀₂₂} (q : p₀₂₁ = p₀₂₁')
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
cube (s₀₁₁ ⬝hp q) s₂₁₁ s₁₀₁ (q⁻¹ ⬝ph s₁₂₁) s₁₁₀ s₁₁₂ :=
by induction q; exact c
definition whisker201 {p₂₀₁' : a₂₀₀ = a₂₀₂} (q : p₂₀₁' = p₂₀₁)
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
cube s₀₁₁ (q ⬝ph s₂₁₁) (s₁₀₁ ⬝hp q⁻¹) s₁₂₁ s₁₁₀ s₁₁₂ :=
by induction q; exact c
definition whisker201' {p₂₀₁' : a₂₀₀ = a₂₀₂} (q : p₂₀₁ = p₂₀₁')
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
cube s₀₁₁ (q⁻¹ ⬝ph s₂₁₁) (s₁₀₁ ⬝hp q) s₁₂₁ s₁₁₀ s₁₁₂ :=
by induction q; exact c
definition whisker221 {p₂₂₁' : a₂₂₀ = a₂₂₂} (q : p₂₂₁ = p₂₂₁')
(c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube s₀₁₁ (s₂₁₁ ⬝hp q) s₁₀₁ (s₁₂₁ ⬝hp q) s₁₁₀ s₁₁₂ :=
by induction q; exact c
definition move221 {p₂₂₁' : a₂₂₀ = a₂₂₂} {s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁'} (q : p₂₂₁ = p₂₂₁')
(c : cube s₀₁₁ (s₂₁₁ ⬝hp q) s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
cube s₀₁₁ s₂₁₁ s₁₀₁ (s₁₂₁ ⬝hp q⁻¹) s₁₁₀ s₁₁₂ :=
by induction q; exact c
definition move201 {p₂₀₁' : a₂₀₀ = a₂₀₂} {s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁'} (q : p₂₀₁' = p₂₀₁)
(c : cube s₀₁₁ (q ⬝ph s₂₁₁) s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) :
cube s₀₁₁ s₂₁₁ (s₁₀₁ ⬝hp q) s₁₂₁ s₁₁₀ s₁₁₂ :=
by induction q; exact c
end
definition ap_eq_ap010 {A B C : Type} (f : A → B → C) {a a' : A} (p : a = a') (b : B) :
ap (λa, f a b) p = ap010 f p b :=
by reflexivity
definition ap011_idp {A B C : Type} (f : A → B → C) {a a' : A} (p : a = a') (b : B) :
ap011 f p idp = ap010 f p b :=
by reflexivity
definition ap011_flip {A B C : Type} (f : A → B → C) {a a' : A} {b b' : B} (p : a = a') (q : b = b') :
ap011 f p q = ap011 (λb a, f a b) q p :=
by induction q; induction p; reflexivity
theorem apd_constant' {A A' : Type} {B : A' → Type} {a₁ a₂ : A} {a' : A'} (b : B a')
(p : a₁ = a₂) : apd (λx, b) p = pathover_of_eq p idp :=
by induction p; reflexivity
definition apo011 {A : Type} {B C D : A → Type} {a a' : A} {p : a = a'} {b : B a} {b' : B a'}
{c : C a} {c' : C a'} (f : Π⦃a⦄, B a → C a → D a) (q : b =[p] b') (r : c =[p] c') :
f b c =[p] f b' c' :=
begin induction q, induction r using idp_rec_on, exact idpo end
definition ap011_ap_square_right {A B C : Type} (f : A → B → C) {a a' : A} (p : a = a')
{b₁ b₂ b₃ : B} {q₁₂ : b₁ = b₂} {q₂₃ : b₂ = b₃} {q₁₃ : b₁ = b₃} (r : q₁₂ ⬝ q₂₃ = q₁₃) :
square (ap011 f p q₁₂) (ap (λx, f x b₃) p) (ap (f a) q₁₃) (ap (f a') q₂₃) :=
by induction r; induction q₂₃; induction q₁₂; induction p; exact ids
definition ap011_ap_square_left {A B C : Type} (f : B → A → C) {a a' : A} (p : a = a')
{b₁ b₂ b₃ : B} {q₁₂ : b₁ = b₂} {q₂₃ : b₂ = b₃} {q₁₃ : b₁ = b₃} (r : q₁₂ ⬝ q₂₃ = q₁₃) :
square (ap011 f q₁₂ p) (ap (f b₃) p) (ap (λx, f x a) q₁₃) (ap (λx, f x a') q₂₃) :=
by induction r; induction q₂₃; induction q₁₂; induction p; exact ids
definition ap_ap011 {A B C D : Type} (g : C → D) (f : A → B → C) {a a' : A} {b b' : B}
(p : a = a') (q : b = b') : ap g (ap011 f p q) = ap011 (λa b, g (f a b)) p q :=
begin
induction p, exact (ap_compose g (f a) q)⁻¹
end
definition con2_assoc {A : Type} {x y z t : A} {p p' : x = y} {q q' : y = z} {r r' : z = t}
(h : p = p') (h' : q = q') (h'' : r = r') :
square ((h ◾ h') ◾ h'') (h ◾ (h' ◾ h'')) (con.assoc p q r) (con.assoc p' q' r') :=
by induction h; induction h'; induction h''; exact hrfl
definition con_left_inv_idp {A : Type} {x : A} {p : x = x} (q : p = idp)
: con.left_inv p = q⁻² ◾ q :=
by cases q; reflexivity
definition eckmann_hilton_con2 {A : Type} {x : A} {p p' q q': idp = idp :> x = x}
(h : p = p') (h' : q = q') : square (h ◾ h') (h' ◾ h) (eckmann_hilton p q) (eckmann_hilton p' q') :=
by induction h; induction h'; exact hrfl
definition ap_con_fn {A B : Type} {a a' : A} {b : B} (g h : A → b = b) (p : a = a') :
ap (λa, g a ⬝ h a) p = ap g p ◾ ap h p :=
by induction p; reflexivity
protected definition homotopy.rfl [reducible] [unfold_full] {A B : Type} {f : A → B} : f ~ f :=
homotopy.refl f
definition compose_id {A B : Type} (f : A → B) : f ∘ id ~ f :=
by reflexivity
definition id_compose {A B : Type} (f : A → B) : id ∘ f ~ f :=
by reflexivity
-- move to eq2
definition ap_eq_ap011 {A B C X : Type} (f : A → B → C) (g : X → A) (h : X → B) {x x' : X}
(p : x = x') : ap (λx, f (g x) (h x)) p = ap011 f (ap g p) (ap h p) :=
by induction p; reflexivity
definition ap_is_weakly_constant {A B : Type} {f : A → B}
(h : is_weakly_constant f) {a a' : A} (p : a = a') : ap f p = (h a a)⁻¹ ⬝ h a a' :=
by induction p; exact !con.left_inv⁻¹
definition ap_is_constant_idp {A B : Type} {f : A → B} {b : B} (p : Πa, f a = b) {a : A} (q : a = a)
(r : q = idp) : ap_is_constant p q = ap02 f r ⬝ (con.right_inv (p a))⁻¹ :=
by cases r; exact !idp_con⁻¹
definition con_right_inv_natural {A : Type} {a a' : A} {p p' : a = a'} (q : p = p') :
con.right_inv p = q ◾ q⁻² ⬝ con.right_inv p' :=
by induction q; induction p; reflexivity
definition whisker_right_ap {A B : Type} {a a' : A}{b₁ b₂ b₃ : B} (q : b₂ = b₃) (f : A → b₁ = b₂)
(p : a = a') : whisker_right q (ap f p) = ap (λa, f a ⬝ q) p :=
by induction p; reflexivity
infix ` ⬝hty `:75 := homotopy.trans
postfix `⁻¹ʰᵗʸ`:(max+1) := homotopy.symm
definition hassoc {A B C D : Type} (h : C → D) (g : B → C) (f : A → B) : (h ∘ g) ∘ f ~ h ∘ (g ∘ f) :=
λa, idp
-- to algebra.homotopy_group
definition homotopy_group_homomorphism_pcompose (n : ) [H : is_succ n] {A B C : Type*} (g : B →* C)
(f : A →* B) : π→g[n] (g ∘* f) ~ π→g[n] g ∘ π→g[n] f :=
begin
induction H with n, exact to_homotopy (homotopy_group_functor_compose (succ n) g f)
end
definition apn_pinv (n : ) {A B : Type*} (f : A ≃* B) :
Ω→[n] f⁻¹ᵉ* ~* (loopn_pequiv_loopn n f)⁻¹ᵉ* :=
begin
refine !to_pinv_pequiv_MK2⁻¹*
end
-- definition homotopy_group_homomorphism_pinv (n : ) {A B : Type*} (f : A ≃* B) :
-- π→g[n+1] f⁻¹ᵉ* ~ (homotopy_group_isomorphism_of_pequiv n f)⁻¹ᵍ :=
-- begin
-- -- refine ptrunc_functor_phomotopy 0 !apn_pinv ⬝hty _,
-- -- intro x, esimp,
-- end
-- definition natural_square_tr_eq {A B : Type} {a a' : A} {f g : A → B}
-- (p : f ~ g) (q : a = a') : natural_square p q = square_of_pathover (apd p q) :=
-- idp
section hsquare
variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type}
{f₁₀ : A₀₀ → A₂₀} {f₃₀ : A₂₀ → A₄₀}
{f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {f₄₁ : A₄₀ → A₄₂}
{f₁₂ : A₀₂ → A₂₂} {f₃₂ : A₂₂ → A₄₂}
{f₀₃ : A₀₂ → A₀₄} {f₂₃ : A₂₂ → A₂₄} {f₄₃ : A₄₂ → A₄₄}
{f₁₄ : A₀₄ → A₂₄} {f₃₄ : A₂₄ → A₄₄}
definition hsquare [reducible] (f₁₀ : A₀₀ → A₂₀) (f₁₂ : A₀₂ → A₂₂)
(f₀₁ : A₀₀ → A₀₂) (f₂₁ : A₂₀ → A₂₂) : Type :=
f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁
definition hsquare_of_homotopy (p : f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁) : hsquare f₁₀ f₁₂ f₀₁ f₂₁ :=
p
definition homotopy_of_hsquare (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) : f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁ :=
p
definition hhconcat (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) :
hsquare (f₃₀ ∘ f₁₀) (f₃₂ ∘ f₁₂) f₀₁ f₄₁ :=
hwhisker_right f₁₀ q ⬝hty hwhisker_left f₃₂ p
definition hvconcat (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (q : hsquare f₁₂ f₁₄ f₀₃ f₂₃) :
hsquare f₁₀ f₁₄ (f₀₃ ∘ f₀₁) (f₂₃ ∘ f₂₁) :=
(hhconcat p⁻¹ʰᵗʸ q⁻¹ʰᵗʸ)⁻¹ʰᵗʸ
definition hhinverse {f₁₀ : A₀₀ ≃ A₂₀} {f₁₂ : A₀₂ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
hsquare f₁₀⁻¹ᵉ f₁₂⁻¹ᵉ f₂₁ f₀₁ :=
λb, eq_inv_of_eq ((p (f₁₀⁻¹ᵉ b))⁻¹ ⬝ ap f₂₁ (to_right_inv f₁₀ b))
definition hvinverse {f₀₁ : A₀₀ ≃ A₀₂} {f₂₁ : A₂₀ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
hsquare f₁₂ f₁₀ f₀₁⁻¹ᵉ f₂₁⁻¹ᵉ :=
(hhinverse p⁻¹ʰᵗʸ)⁻¹ʰᵗʸ
infix ` ⬝htyh `:73 := hhconcat
infix ` ⬝htyv `:73 := hvconcat
postfix `⁻¹ʰᵗʸʰ`:(max+1) := hhinverse
postfix `⁻¹ʰᵗʸᵛ`:(max+1) := hvinverse
end hsquare
-- move to init.funext
protected definition homotopy.rec_on_idp_left [recursor] {A : Type} {P : A → Type} {g : Πa, P a}
{Q : Πf, (f ~ g) → Type} {f : Π x, P x}
(p : f ~ g) (H : Q g (homotopy.refl g)) : Q f p :=
begin
induction p using homotopy.rec_on, induction q, exact H
end
--eq2 (duplicate of ap_compose_ap02_constant)
definition ap02_ap_constant {A B C : Type} {a a' : A} (f : B → C) (b : B) (p : a = a') :
square (ap_constant p (f b)) (ap02 f (ap_constant p b)) (ap_compose f (λx, b) p) idp :=
by induction p; exact ids
definition ap_constant_compose {A B C : Type} {a a' : A} (c : C) (f : A → B) (p : a = a') :
square (ap_constant p c) (ap_constant (ap f p) c) (ap_compose (λx, c) f p) idp :=
by induction p; exact ids
definition ap02_constant {A B : Type} {a a' : A} (b : B) {p p' : a = a'}
(q : p = p') : square (ap_constant p b) (ap_constant p' b) (ap02 (λx, b) q) idp :=
by induction q; exact vrfl
end eq open eq
namespace wedge
open pushout unit
protected definition glue (A B : Type*) : inl pt = inr pt :> wedge A B :=
pushout.glue ⋆
end wedge
namespace pi
definition is_contr_pi_of_neg {A : Type} (B : A → Type) (H : ¬ A) : is_contr (Πa, B a) :=
begin
apply is_contr.mk (λa, empty.elim (H a)), intro f, apply eq_of_homotopy, intro x, contradiction
end
end pi
namespace trunc
-- TODO: redefine loopn_ptrunc_pequiv
definition apn_ptrunc_functor (n : ℕ₋₂) (k : ) {A B : Type*} (f : A →* B) :
Ω→[k] (ptrunc_functor (n+k) f) ∘* (loopn_ptrunc_pequiv n k A)⁻¹ᵉ* ~*
(loopn_ptrunc_pequiv n k B)⁻¹ᵉ* ∘* ptrunc_functor n (Ω→[k] f) :=
begin
revert n, induction k with k IH: intro n,
{ reflexivity },
{ exact sorry }
end
definition ptrunc_pequiv_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc n A]
[is_trunc n B] : f ∘* ptrunc_pequiv n A ~* ptrunc_pequiv n B ∘* ptrunc_functor n f :=
begin
fapply phomotopy.mk,
{ intro a, induction a with a, reflexivity },
{ refine !idp_con ⬝ _ ⬝ !idp_con⁻¹, refine !ap_compose'⁻¹ ⬝ _, apply ap_id }
end
definition ptr_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) :
ptrunc_functor n f ∘* ptr n A ~* ptr n B ∘* f :=
begin
fapply phomotopy.mk,
{ intro a, reflexivity },
{ reflexivity }
end
definition ptrunc_elim_pcompose (n : ℕ₋₂) {A B C : Type*} (g : B →* C) (f : A →* B) [is_trunc n B]
[is_trunc n C] : ptrunc.elim n (g ∘* f) ~* g ∘* ptrunc.elim n f :=
begin
fapply phomotopy.mk,
{ intro a, induction a with a, reflexivity },
{ apply idp_con }
end
end trunc
namespace is_equiv
definition inv_homotopy_inv {A B : Type} {f g : A → B} [is_equiv f] [is_equiv g] (p : f ~ g)
: f⁻¹ ~ g⁻¹ :=
λb, (left_inv g (f⁻¹ b))⁻¹ ⬝ ap g⁻¹ ((p (f⁻¹ b))⁻¹ ⬝ right_inv f b)
definition to_inv_homotopy_to_inv {A B : Type} {f g : A ≃ B} (p : f ~ g) : f⁻¹ᵉ ~ g⁻¹ᵉ :=
inv_homotopy_inv p
end is_equiv
namespace prod
definition pprod_functor [constructor] {A B C D : Type*} (f : A →* C) (g : B →* D) : A ×* B →* C ×* D :=
pmap.mk (prod_functor f g) (prod_eq (respect_pt f) (respect_pt g))
open prod.ops
definition prod_pathover_equiv {A : Type} {B C : A → Type} {a a' : A} (p : a = a')
(x : B a × C a) (x' : B a' × C a') : x =[p] x' ≃ x.1 =[p] x'.1 × x.2 =[p] x'.2 :=
begin
fapply equiv.MK,
{ intro q, induction q, constructor: constructor },
{ intro v, induction v with q r, exact prod_pathover _ _ _ q r },
{ intro v, induction v with q r, induction x with b c, induction x' with b' c',
esimp at *, induction q, refine idp_rec_on r _, reflexivity },
{ intro q, induction q, induction x with b c, reflexivity }
end
end prod open prod
namespace sigma
-- set_option pp.notation false
-- set_option pp.binder_types true
open sigma.ops
definition pathover_pr1 [unfold 9] {A : Type} {B : A → Type} {C : Πa, B a → Type}
{a a' : A} {p : a = a'} {x : Σb, C a b} {x' : Σb', C a' b'}
(q : x =[p] x') : x.1 =[p] x'.1 :=
begin induction q, constructor end
definition is_prop_elimo_self {A : Type} (B : A → Type) {a : A} (b : B a) {H : is_prop (B a)} :
@is_prop.elimo A B a a idp b b H = idpo :=
!is_prop.elim
definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} (C : Πa, B a → Type)
{a a' : A} (p : a = a') (x : Σb, C a b) (x' : Σb', C a' b')
[Πa b, is_prop (C a b)] : x =[p] x' ≃ x.1 =[p] x'.1 :=
begin
fapply equiv.MK,
{ exact pathover_pr1 },
{ intro q, induction x with b c, induction x' with b' c', esimp at q, induction q,
apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo },
{ intro q, induction x with b c, induction x' with b' c', esimp at q, induction q,
have c = c', from !is_prop.elim, induction this,
rewrite [▸*, is_prop_elimo_self (C a) c] },
{ intro q, induction q, induction x with b c, rewrite [▸*, is_prop_elimo_self (C a) c] }
end
definition sigma_ua {A B : Type} (C : A ≃ B → Type) :
(Σ(p : A = B), C (equiv_of_eq p)) ≃ Σ(e : A ≃ B), C e :=
sigma_equiv_sigma_left' !eq_equiv_equiv
-- definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} {C : Πa, B a → Type}
-- {a a' : A} {p : a = a'} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'}
-- [Πa b, is_prop (C a b)] : ⟨b, c⟩ =[p] ⟨b', c'⟩ ≃ b =[p] b' :=
-- begin
-- fapply equiv.MK,
-- { exact pathover_pr1 },
-- { intro q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo },
-- { intro q, induction q,
-- have c = c', from !is_prop.elim, induction this,
-- rewrite [▸*, is_prop_elimo_self (C a) c] },
-- { esimp, generalize ⟨b, c⟩, intro x q, }
-- end
--rexact @(ap pathover_pr1) _ idpo _,
end sigma open sigma
namespace pointed
definition phomotopy_of_homotopy {X Y : Type*} {f g : X →* Y} (h : f ~ g) [is_set Y] : f ~* g :=
begin
fapply phomotopy.mk,
{ exact h },
{ apply is_set.elim }
end
end pointed open pointed
namespace group
open is_trunc
definition to_fun_isomorphism_trans {G H K : Group} (φ : G ≃g H) (ψ : H ≃g K) :
φ ⬝g ψ ~ ψ ∘ φ :=
by reflexivity
definition pmap_of_homomorphism_gid (G : Group) : pmap_of_homomorphism (gid G) ~* pid G :=
begin
fapply phomotopy_of_homotopy, reflexivity
end
definition pmap_of_homomorphism_gcompose {G H K : Group} (ψ : H →g K) (φ : G →g H)
: pmap_of_homomorphism (ψ ∘g φ) ~* pmap_of_homomorphism ψ ∘* pmap_of_homomorphism φ :=
begin
fapply phomotopy_of_homotopy, reflexivity
end
definition pmap_of_homomorphism_phomotopy {G H : Group} {φ ψ : G →g H} (H : φ ~ ψ)
: pmap_of_homomorphism φ ~* pmap_of_homomorphism ψ :=
begin
fapply phomotopy_of_homotopy, exact H
end
definition pequiv_of_isomorphism_trans {G₁ G₂ G₃ : Group} (φ : G₁ ≃g G₂) (ψ : G₂ ≃g G₂) :
pequiv_of_isomorphism (φ ⬝g ψ) ~* pequiv_of_isomorphism ψ ∘* pequiv_of_isomorphism φ :=
begin
apply phomotopy_of_homotopy, reflexivity
end
definition isomorphism_eq {G H : Group} {φ ψ : G ≃g H} (p : φ ~ ψ) : φ = ψ :=
begin
induction φ with φ φe, induction ψ with ψ ψe,
exact apd011 isomorphism.mk (homomorphism_eq p) !is_prop.elimo
end
definition is_set_isomorphism [instance] (G H : Group) : is_set (G ≃g H) :=
begin
have H : G ≃g H ≃ Σ(f : G →g H), is_equiv f,
begin
fapply equiv.MK,
{ intro φ, induction φ, constructor, assumption },
{ intro v, induction v, constructor, assumption },
{ intro v, induction v, reflexivity },
{ intro φ, induction φ, reflexivity }
end,
apply is_trunc_equiv_closed_rev, exact H
end
-- definition is_equiv_isomorphism
-- some extra instances for type class inference
-- definition is_mul_hom_comm_homomorphism [instance] {G G' : AbGroup} (φ : G →g G')
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G))
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
-- homomorphism.struct φ
-- definition is_mul_hom_comm_homomorphism1 [instance] {G G' : AbGroup} (φ : G →g G')
-- : @is_mul_hom G G' _
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
-- homomorphism.struct φ
-- definition is_mul_hom_comm_homomorphism2 [instance] {G G' : AbGroup} (φ : G →g G')
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) _ φ :=
-- homomorphism.struct φ
end group open group
namespace fiber
definition pcompose_ppoint {A B : Type*} (f : A →* B) : f ∘* ppoint f ~* pconst (pfiber f) B :=
begin
fapply phomotopy.mk,
{ exact point_eq },
{ exact !idp_con⁻¹ }
end
definition ap1_ppoint_phomotopy {A B : Type*} (f : A →* B)
: Ω→ (ppoint f) ∘* pfiber_loop_space f ~* ppoint (Ω→ f) :=
begin
exact sorry
end
definition pfiber_equiv_of_square_ppoint {A B C D : Type*} {f : A →* B} {g : C →* D}
(h : A ≃* C) (k : B ≃* D) (s : k ∘* f ~* g ∘* h)
: ppoint g ∘* pfiber_equiv_of_square h k s ~* h ∘* ppoint f :=
sorry
end fiber
namespace is_trunc
definition center' {A : Type} (H : is_contr A) : A := center A
definition pequiv_punit_of_is_contr [constructor] (A : Type*) (H : is_contr A) : A ≃* punit :=
pequiv_of_equiv (equiv_unit_of_is_contr A) (@is_prop.elim unit _ _ _)
definition pequiv_punit_of_is_contr' [constructor] (A : Type) (H : is_contr A)
: pointed.MK A (center A) ≃* punit :=
pequiv_punit_of_is_contr (pointed.MK A (center A)) H
definition is_trunc_is_contr_fiber [instance] [priority 900] (n : ℕ₋₂) {A B : Type} (f : A → B)
(b : B) [is_trunc n A] [is_trunc n B] : is_trunc n (is_contr (fiber f b)) :=
begin
cases n,
{ apply is_contr_of_inhabited_prop, apply is_contr_fun_of_is_equiv,
apply is_equiv_of_is_contr },
{ apply is_trunc_succ_of_is_prop }
end
end is_trunc
namespace is_conn
open unit trunc_index nat is_trunc pointed.ops
definition is_contr_of_trivial_homotopy' (n : ℕ₋₂) (A : Type) [is_trunc n A] [is_conn -1 A]
(H : Πk a, is_contr (π[k] (pointed.MK A a))) : is_contr A :=
begin
assert aa : trunc -1 A,
{ apply center },
assert H3 : is_conn 0 A,
{ induction aa with a, exact H 0 a },
exact is_contr_of_trivial_homotopy n A H
end
-- don't make is_prop_is_trunc an instance
definition is_trunc_succ_is_trunc [instance] (n m : ℕ₋₂) (A : Type) : is_trunc (n.+1) (is_trunc m A) :=
is_trunc_of_le _ !minus_one_le_succ
definition is_conn_of_trivial_homotopy (n : ℕ₋₂) (m : ) (A : Type) [is_trunc n A] [is_conn 0 A]
(H : Π(k : ) a, k ≤ m → is_contr (π[k] (pointed.MK A a))) : is_conn m A :=
begin
apply is_contr_of_trivial_homotopy_nat m (trunc m A),
intro k a H2,
induction a with a,
apply is_trunc_equiv_closed_rev,
exact equiv_of_pequiv (homotopy_group_trunc_of_le (pointed.MK A a) _ _ H2),
exact H k a H2
end
definition is_conn_of_trivial_homotopy_pointed (n : ℕ₋₂) (m : ) (A : Type*) [is_trunc n A]
(H : Π(k : ), k ≤ m → is_contr (π[k] A)) : is_conn m A :=
begin
have is_conn 0 A, proof H 0 !zero_le qed,
apply is_conn_of_trivial_homotopy n m A,
intro k a H2, revert a, apply is_conn.elim -1,
cases A with A a, exact H k H2
end
end is_conn
namespace circle
/-
Suppose for `f, g : A -> B` I prove a homotopy `H : f ~ g` by induction on the element in `A`.
And suppose `p : a = a'` is a path constructor in `A`.
Then `natural_square_tr H p` has type `square (H a) (H a') (ap f p) (ap g p)` and is equal
to the square which defined H on the path constructor
-/
definition natural_square_elim_loop {A : Type} {f g : S¹ → A} (p : f base = g base)
(q : square p p (ap f loop) (ap g loop))
: natural_square (circle.rec p (eq_pathover q)) loop = q :=
begin
-- refine !natural_square_eq ⬝ _,
refine ap square_of_pathover !rec_loop ⬝ _,
exact to_right_inv !eq_pathover_equiv_square q
end
definition circle_elim_constant [unfold 5] {A : Type} {a : A} {p : a = a} (r : p = idp) (x : S¹) :
circle.elim a p x = a :=
begin
induction x,
{ reflexivity },
{ apply eq_pathover_constant_right, apply hdeg_square, exact !elim_loop ⬝ r }
end
end circle
namespace susp
definition loop_psusp_intro_natural {X Y Z : Type*} (g : psusp Y →* Z) (f : X →* Y) :
loop_psusp_intro (g ∘* psusp_functor f) ~* loop_psusp_intro g ∘* f :=
pwhisker_right _ !ap1_pcompose ⬝* !passoc ⬝* pwhisker_left _ !loop_psusp_unit_natural⁻¹* ⬝*
!passoc⁻¹*
definition psusp_functor_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) :
psusp_functor f ~* psusp_functor g :=
begin
fapply phomotopy.mk,
{ intro x, induction x,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover, apply hdeg_square, esimp, refine !elim_merid ⬝ _ ⬝ !elim_merid⁻¹ᵖ,
exact ap merid (p a), }},
{ reflexivity },
end
definition psusp_functor_pid (A : Type*) : psusp_functor (pid A) ~* pid (psusp A) :=
begin
fapply phomotopy.mk,
{ intro x, induction x,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right, apply hdeg_square, apply elim_merid }},
{ reflexivity },
end
definition psusp_functor_pcompose {A B C : Type*} (g : B →* C) (f : A →* B) :
psusp_functor (g ∘* f) ~* psusp_functor g ∘* psusp_functor f :=
begin
fapply phomotopy.mk,
{ intro x, induction x,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover, apply hdeg_square, esimp,
refine !elim_merid ⬝ _ ⬝ (ap_compose (psusp_functor g) _ _)⁻¹ᵖ,
refine _ ⬝ ap02 _ !elim_merid⁻¹, exact !elim_merid⁻¹ }},
{ reflexivity },
end
definition psusp_elim_psusp_functor {A B C : Type*} (g : B →* Ω C) (f : A →* B) :
psusp.elim g ∘* psusp_functor f ~* psusp.elim (g ∘* f) :=
begin
refine !passoc ⬝* _, exact pwhisker_left _ !psusp_functor_pcompose⁻¹*
end
definition psusp_elim_phomotopy {A B : Type*} {f g : A →* Ω B} (p : f ~* g) : psusp.elim f ~* psusp.elim g :=
pwhisker_left _ (psusp_functor_phomotopy p)
definition psusp_elim_natural {X Y Z : Type*} (g : Y →* Z) (f : X →* Ω Y)
: g ∘* psusp.elim f ~* psusp.elim (Ω→ g ∘* f) :=
begin
refine _ ⬝* pwhisker_left _ !psusp_functor_pcompose⁻¹*,
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
exact pwhisker_right _ !loop_psusp_counit_natural
end
end susp
namespace category
-- replace precategory_group with precategory_Group (the former has a universe error)
definition precategory_Group.{u} [instance] [constructor] : precategory.{u+1 u} Group :=
begin
fapply precategory.mk,
{ exact λG H, G →g H },
{ exact _ },
{ exact λG H K ψ φ, ψ ∘g φ },
{ exact λG, gid G },
{ intros, apply homomorphism_eq, esimp },
{ intros, apply homomorphism_eq, esimp },
{ intros, apply homomorphism_eq, esimp }
end
definition precategory_AbGroup.{u} [instance] [constructor] : precategory.{u+1 u} AbGroup :=
begin
fapply precategory.mk,
{ exact λG H, G →g H },
{ exact _ },
{ exact λG H K ψ φ, ψ ∘g φ },
{ exact λG, gid G },
{ intros, apply homomorphism_eq, esimp },
{ intros, apply homomorphism_eq, esimp },
{ intros, apply homomorphism_eq, esimp }
end
open iso
definition Group_is_iso_of_is_equiv {G H : Group} (φ : G →g H) (H : is_equiv (group_fun φ)) :
is_iso φ :=
begin
fconstructor,
{ exact (isomorphism.mk φ H)⁻¹ᵍ },
{ apply homomorphism_eq, rexact left_inv φ },
{ apply homomorphism_eq, rexact right_inv φ }
end
definition Group_is_equiv_of_is_iso {G H : Group} (φ : G ⟶ H) (Hφ : is_iso φ) :
is_equiv (group_fun φ) :=
begin
fapply adjointify,
{ exact group_fun φ⁻¹ʰ },
{ note p := right_inverse φ, exact ap010 group_fun p },
{ note p := left_inverse φ, exact ap010 group_fun p }
end
definition Group_iso_equiv (G H : Group) : (G ≅ H) ≃ (G ≃g H) :=
begin
fapply equiv.MK,
{ intro φ, induction φ with φ φi, constructor, exact Group_is_equiv_of_is_iso φ _ },
{ intro v, induction v with φ φe, constructor, exact Group_is_iso_of_is_equiv φ _ },
{ intro v, induction v with φ φe, apply isomorphism_eq, reflexivity },
{ intro φ, induction φ with φ φi, apply iso_eq, reflexivity }
end
definition Group_props.{u} {A : Type.{u}} (v : (A → A → A) × (A → A) × A) : Prop.{u} :=
begin
induction v with m v, induction v with i o,
fapply trunctype.mk,
{ exact is_set A × (Πa, m a o = a) × (Πa, m o a = a) × (Πa b c, m (m a b) c = m a (m b c)) ×
(Πa, m (i a) a = o) },
{ apply is_trunc_of_imp_is_trunc, intro v, induction v with H v,
have is_prop (Πa, m a o = a), from _,
have is_prop (Πa, m o a = a), from _,
have is_prop (Πa b c, m (m a b) c = m a (m b c)), from _,
have is_prop (Πa, m (i a) a = o), from _,
apply is_trunc_prod }
end
definition Group.sigma_char2.{u} : Group.{u} ≃
Σ(A : Type.{u}) (v : (A → A → A) × (A → A) × A), Group_props v :=
begin
fapply equiv.MK,
{ intro G, refine ⟨G, _⟩, induction G with G g, induction g with m s ma o om mo i mi,
repeat (fconstructor; do 2 try assumption), },
{ intro v, induction v with x v, induction v with y v, repeat induction y with x y,
repeat induction v with x v, constructor, fconstructor, repeat assumption },
{ intro v, induction v with x v, induction v with y v, repeat induction y with x y,
repeat induction v with x v, reflexivity },
{ intro v, repeat induction v with x v, reflexivity },
end
open is_trunc
section
local attribute group.to_has_mul group.to_has_inv [coercion]
theorem inv_eq_of_mul_eq {A : Type} (G H : group A) (p : @mul A G ~2 @mul A H) :
@inv A G ~ @inv A H :=
begin
have foo : Π(g : A), @inv A G g = (@inv A G g * g) * @inv A H g,
from λg, !mul_inv_cancel_right⁻¹,
cases G with Gs Gm Gh1 G1 Gh2 Gh3 Gi Gh4,
cases H with Hs Hm Hh1 H1 Hh2 Hh3 Hi Hh4,
change Gi ~ Hi, intro g, have p' : Gm ~2 Hm, from p,
calc
Gi g = Hm (Hm (Gi g) g) (Hi g) : foo
... = Hm (Gm (Gi g) g) (Hi g) : by rewrite p'
... = Hm G1 (Hi g) : by rewrite Gh4
... = Gm G1 (Hi g) : by rewrite p'
... = Hi g : Gh2
end
theorem one_eq_of_mul_eq {A : Type} (G H : group A)
(p : @mul A (group.to_has_mul G) ~2 @mul A (group.to_has_mul H)) :
@one A (group.to_has_one G) = @one A (group.to_has_one H) :=
begin
cases G with Gm Gs Gh1 G1 Gh2 Gh3 Gi Gh4,
cases H with Hm Hs Hh1 H1 Hh2 Hh3 Hi Hh4,
exact (Hh2 G1)⁻¹ ⬝ (p H1 G1)⁻¹ ⬝ Gh3 H1,
end
end
open prod.ops
definition group_of_Group_props.{u} {A : Type.{u}} {m : A → A → A} {i : A → A} {o : A}
(H : Group_props (m, (i, o))) : group A :=
⦃group, mul := m, inv := i, one := o, is_set_carrier := H.1,
mul_one := H.2.1, one_mul := H.2.2.1, mul_assoc := H.2.2.2.1, mul_left_inv := H.2.2.2.2⦄
theorem Group_eq_equiv_lemma2 {A : Type} {m m' : A → A → A} {i i' : A → A} {o o' : A}
(H : Group_props (m, (i, o))) (H' : Group_props (m', (i', o'))) :
(m, (i, o)) = (m', (i', o')) ≃ (m ~2 m') :=
begin
have is_set A, from pr1 H,
apply equiv_of_is_prop,
{ intro p, exact apd100 (eq_pr1 p)},
{ intro p, apply prod_eq (eq_of_homotopy2 p),
apply prod_eq: esimp [Group_props] at *; esimp,
{ apply eq_of_homotopy,
exact inv_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p },
{ exact one_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p }}
end
open sigma.ops
theorem Group_eq_equiv_lemma {G H : Group}
(p : (Group.sigma_char2 G).1 = (Group.sigma_char2 H).1) :
((Group.sigma_char2 G).2 =[p] (Group.sigma_char2 H).2) ≃
(is_mul_hom (equiv_of_eq (proof p qed : Group.carrier G = Group.carrier H))) :=
begin
refine !sigma_pathover_equiv_of_is_prop ⬝e _,
induction G with G g, induction H with H h,
esimp [Group.sigma_char2] at p, induction p,
refine !pathover_idp ⬝e _,
induction g with s m ma o om mo i mi, induction h with σ μ μa ε εμ με ι μι,
exact Group_eq_equiv_lemma2 (Group.sigma_char2 (Group.mk G (group.mk s m ma o om mo i mi))).2.2
(Group.sigma_char2 (Group.mk G (group.mk σ μ μa ε εμ με ι μι))).2.2
end
definition isomorphism.sigma_char (G H : Group) : (G ≃g H) ≃ Σ(e : G ≃ H), is_mul_hom e :=
begin
fapply equiv.MK,
{ intro φ, exact ⟨equiv_of_isomorphism φ, to_respect_mul φ⟩ },
{ intro v, induction v with e p, exact isomorphism_of_equiv e p },
{ intro v, induction v with e p, induction e, reflexivity },
{ intro φ, induction φ with φ H, induction φ, reflexivity },
end
definition Group_eq_equiv (G H : Group) : G = H ≃ (G ≃g H) :=
begin
refine (eq_equiv_fn_eq_of_equiv Group.sigma_char2 G H) ⬝e _,
refine !sigma_eq_equiv ⬝e _,
refine sigma_equiv_sigma_right Group_eq_equiv_lemma ⬝e _,
transitivity (Σ(e : (Group.sigma_char2 G).1 ≃ (Group.sigma_char2 H).1),
@is_mul_hom _ _ _ _ (to_fun e)), apply sigma_ua,
exact !isomorphism.sigma_char⁻¹ᵉ
end
definition to_fun_Group_eq_equiv {G H : Group} (p : G = H)
: Group_eq_equiv G H p ~ isomorphism_of_eq p :=
begin
induction p, reflexivity
end
definition Group_eq2 {G H : Group} {p q : G = H}
(r : isomorphism_of_eq p ~ isomorphism_of_eq q) : p = q :=
begin
apply eq_of_fn_eq_fn (Group_eq_equiv G H),
apply isomorphism_eq,
intro g, refine to_fun_Group_eq_equiv p g ⬝ r g ⬝ (to_fun_Group_eq_equiv q g)⁻¹,
end
definition Group_eq_equiv_Group_iso (G₁ G₂ : Group) : G₁ = G₂ ≃ G₁ ≅ G₂ :=
Group_eq_equiv G₁ G₂ ⬝e (Group_iso_equiv G₁ G₂)⁻¹ᵉ
definition category_Group.{u} : category Group.{u} :=
category.mk precategory_Group
begin
intro G H,
apply is_equiv_of_equiv_of_homotopy (Group_eq_equiv_Group_iso G H),
intro p, induction p, fapply iso_eq, apply homomorphism_eq, reflexivity
end
definition category_AbGroup : category AbGroup :=
category.mk precategory_AbGroup sorry
definition Grp.{u} [constructor] : Category := category.Mk Group.{u} category_Group
definition AbGrp [constructor] : Category := category.Mk AbGroup category_AbGroup
end category
namespace sphere
-- definition constant_sphere_map_sphere {n m : } (H : n < m) (f : S* n →* S* m) :
-- f ~* pconst (S* n) (S* m) :=
-- begin
-- assert H : is_contr (Ω[n] (S* m)),
-- { apply homotopy_group_sphere_le, },
-- apply phomotopy_of_eq,
-- apply eq_of_fn_eq_fn !psphere_pmap_pequiv,
-- apply @is_prop.elim
-- end
end sphere
definition image_pathover {A B : Type} (f : A → B) {x y : B} (p : x = y) (u : image f x) (v : image f y) : u =[p] v :=
begin
apply is_prop.elimo
end
section injective_surjective
open trunc fiber image
variables {A B C : Type} [is_set A] [is_set B] [is_set C] (f : A → B) (g : B → C) (h : A → C) (H : g ∘ f ~ h)
include H
definition is_embedding_factor : is_embedding h → is_embedding f :=
begin
induction H using homotopy.rec_on_idp,
intro E,
fapply is_embedding_of_is_injective,
intro x y p,
fapply @is_injective_of_is_embedding _ _ _ E _ _ (ap g p)
end
definition is_surjective_factor : is_surjective h → is_surjective g :=
begin
induction H using homotopy.rec_on_idp,
intro S,
intro c,
note p := S c,
induction p,
apply tr,
fapply fiber.mk,
exact f a,
exact p
end
end injective_surjective
definition AbGroup_of_Group.{u} (G : Group.{u}) (H : Π x y : G, x * y = y * x) : AbGroup.{u} :=
begin
induction G,
fapply AbGroup.mk,
assumption,
exact ⦃ab_group, struct, mul_comm := H⦄
end
definition trivial_ab_group : AbGroup.{0} :=
begin
fapply AbGroup_of_Group Trivial_group, intro x y, reflexivity
end
definition trivial_homomorphism (A B : AbGroup) : A →g B :=
begin
fapply homomorphism.mk,
exact λ a, 1,
intros, symmetry, exact one_mul 1,
end
definition from_trivial_ab_group (A : AbGroup) : trivial_ab_group →g A :=
trivial_homomorphism trivial_ab_group A
definition is_embedding_from_trivial_ab_group (A : AbGroup) : is_embedding (from_trivial_ab_group A) :=
begin
fapply is_embedding_of_is_injective,
intro x y p,
induction x, induction y, reflexivity
end
definition to_trivial_ab_group (A : AbGroup) : A →g trivial_ab_group :=
trivial_homomorphism A trivial_ab_group
/- Stuff added by Jeremy -/
definition exists.elim {A : Type} {p : A → Type} {B : Type} [is_prop B] (H : Exists p)
(H' : ∀ (a : A), p a → B) : B :=
trunc.elim (sigma.rec H') H
definition image.elim {A B : Type} {f : A → B} {C : Type} [is_prop C] {b : B}
(H : image f b) (H' : ∀ (a : A), f a = b → C) : C :=
begin
refine (trunc.elim _ H),
intro H'', cases H'' with a Ha, exact H' a Ha
end
definition image.intro {A B : Type} {f : A → B} {a : A} {b : B} (h : f a = b) : image f b :=
begin
apply trunc.merely.intro,
apply fiber.mk,
exact h
end
definition image.equiv_exists {A B : Type} {f : A → B} {b : B} : image f b ≃ ∃ a, f a = b :=
trunc_equiv_trunc _ (fiber.sigma_char _ _)
-- move to homomorphism.hlean
section
theorem eq_zero_of_eq_zero_of_is_embedding {A B : Type} [add_group A] [add_group B]
{f : A → B} [is_add_hom f] [is_embedding f] {a : A} (h : f a = 0) : a = 0 :=
have f a = f 0, by rewrite [h, respect_zero],
show a = 0, from is_injective_of_is_embedding this
end
/- put somewhere in algebra -/
structure Ring :=
(carrier : Type) (struct : ring carrier)
attribute Ring.carrier [coercion]
attribute Ring.struct [instance]