Spectral/homotopy/susp.hlean

85 lines
3.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import ..pointed
open susp eq pointed function is_equiv
namespace susp
variables {X X' Y Y' Z : Type*}
definition susp_functor_pconst_homotopy [unfold 3] {X Y : Type*} (x : psusp X) :
psusp_functor (pconst X Y) x = pt :=
begin
induction x,
{ reflexivity },
{ exact (merid pt)⁻¹ },
{ apply eq_pathover, refine !elim_merid ⬝ph _ ⬝hp !ap_constant⁻¹, exact square_of_eq !con.right_inv⁻¹ }
end
definition susp_functor_pconst [constructor] (X Y : Type*) : psusp_functor (pconst X Y) ~* pconst (psusp X) (psusp Y) :=
begin
fapply phomotopy.mk,
{ exact susp_functor_pconst_homotopy },
{ reflexivity }
end
definition psusp_pfunctor [constructor] (X Y : Type*) : ppmap X Y →* ppmap (psusp X) (psusp Y) :=
pmap.mk psusp_functor (eq_of_phomotopy !susp_functor_pconst)
definition psusp_pelim [constructor] (X Y : Type*) : ppmap X (Ω Y) →* ppmap (psusp X) Y :=
ppcompose_left (loop_psusp_counit Y) ∘* psusp_pfunctor X (Ω Y)
definition loop_psusp_pintro [constructor] (X Y : Type*) : ppmap (psusp X) Y →* ppmap X (Ω Y) :=
ppcompose_right (loop_psusp_unit X) ∘* pap1 (psusp X) Y
definition loop_psusp_pintro_natural_left (f : X' →* X) :
psquare (loop_psusp_pintro X Y) (loop_psusp_pintro X' Y)
(ppcompose_right (psusp_functor f)) (ppcompose_right f) :=
!pap1_natural_left ⬝h* ppcompose_right_psquare (loop_psusp_unit_natural f)⁻¹*
definition loop_psusp_pintro_natural_right (f : Y →* Y') :
psquare (loop_psusp_pintro X Y) (loop_psusp_pintro X Y')
(ppcompose_left f) (ppcompose_left (Ω→ f)) :=
!pap1_natural_right ⬝h* !ppcompose_left_ppcompose_right⁻¹*
definition is_equiv_loop_psusp_pintro [constructor] (X Y : Type*) :
is_equiv (loop_psusp_pintro X Y) :=
begin
fapply adjointify,
{ exact psusp_pelim X Y },
{ intro g, apply eq_of_phomotopy, exact psusp_adjoint_loop_right_inv g },
{ intro f, apply eq_of_phomotopy, exact psusp_adjoint_loop_left_inv f }
end
definition psusp_adjoint_loop' [constructor] (X Y : Type*) : ppmap (psusp X) Y ≃* ppmap X (Ω Y) :=
pequiv_of_pmap (loop_psusp_pintro X Y) (is_equiv_loop_psusp_pintro X Y)
definition psusp_adjoint_loop_natural_right (f : Y →* Y') :
psquare (psusp_adjoint_loop' X Y) (psusp_adjoint_loop' X Y')
(ppcompose_left f) (ppcompose_left (Ω→ f)) :=
loop_psusp_pintro_natural_right f
definition psusp_adjoint_loop_natural_left (f : X' →* X) :
psquare (psusp_adjoint_loop' X Y) (psusp_adjoint_loop' X' Y)
(ppcompose_right (psusp_functor f)) (ppcompose_right f) :=
loop_psusp_pintro_natural_left f
definition iterate_psusp_iterate_psusp_rev (n m : ) (A : Type*) :
iterate_psusp n (iterate_psusp m A) ≃* iterate_psusp (m + n) A :=
begin
induction n with n e,
{ reflexivity },
{ exact psusp_pequiv e }
end
definition iterate_psusp_pequiv [constructor] (n : ) {X Y : Type*} (f : X ≃* Y) :
iterate_psusp n X ≃* iterate_psusp n Y :=
begin
induction n with n e,
{ exact f },
{ exact psusp_pequiv e }
end
open algebra nat
definition iterate_psusp_iterate_psusp (n m : ) (A : Type*) :
iterate_psusp n (iterate_psusp m A) ≃* iterate_psusp (n + m) A :=
iterate_psusp_iterate_psusp_rev n m A ⬝e* pequiv_of_eq (ap (λk, iterate_psusp k A) (add.comm m n))
end susp