79 lines
3.4 KiB
Text
79 lines
3.4 KiB
Text
import .direct_sum .quotient_group ..move_to_lib
|
||
|
||
open eq algebra is_trunc set_quotient relation sigma prod sum list trunc function equiv sigma.ops nat
|
||
|
||
namespace group
|
||
|
||
section
|
||
|
||
parameters (A : ℕ → AbGroup) (f : Πi , A i → A (i + 1))
|
||
variables {A' : AbGroup}
|
||
|
||
definition seq_colim_carrier : AbGroup := dirsum A
|
||
inductive seq_colim_rel : seq_colim_carrier → Type :=
|
||
| rmk : Πi a, seq_colim_rel ((dirsum_incl A i a) * (dirsum_incl A (i + 1) (f i a))⁻¹)
|
||
|
||
definition seq_colim : AbGroup := quotient_ab_group_gen seq_colim_carrier (λa, ∥seq_colim_rel a∥)
|
||
|
||
parameters {A f}
|
||
definition seq_colim_incl [constructor] (i : ℕ) : A i →g seq_colim :=
|
||
gqg_map _ _ ∘g dirsum_incl A i
|
||
|
||
definition seq_colim_quotient (h : Πi, A i →g A') (k : Πi a, h i a = h (succ i) (f i a))
|
||
(v : seq_colim_carrier) (r : ∥seq_colim_rel v∥) : dirsum_elim h v = 1 :=
|
||
begin
|
||
induction r with r, induction r,
|
||
refine !to_respect_mul ⬝ _,
|
||
refine ap (λγ, group_fun (dirsum_elim h) (group_fun (dirsum_incl A i) a) * group_fun (dirsum_elim h) γ)
|
||
(!to_respect_inv)⁻¹ ⬝ _,
|
||
refine ap (λγ, γ * group_fun (dirsum_elim h) (group_fun (dirsum_incl A (succ i)) (f i a)⁻¹))
|
||
!dirsum_elim_compute ⬝ _,
|
||
refine ap (λγ, (h i a) * γ) !dirsum_elim_compute ⬝ _,
|
||
refine ap (λγ, γ * group_fun (h (succ i)) (f i a)⁻¹) !k ⬝ _,
|
||
refine ap (λγ, group_fun (h (succ i)) (f i a) * γ) (!to_respect_inv) ⬝ _,
|
||
exact !mul.right_inv
|
||
end
|
||
|
||
definition seq_colim_elim [constructor] (h : Πi, A i →g A')
|
||
(k : Πi a, h i a = h (succ i) (f i a)) : seq_colim →g A' :=
|
||
gqg_elim _ (dirsum_elim h) (seq_colim_quotient h k)
|
||
|
||
definition seq_colim_compute (h : Πi, A i →g A')
|
||
(k : Πi a, h i a = h (succ i) (f i a)) (i : ℕ) (a : A i) :
|
||
(seq_colim_elim h k) (seq_colim_incl i a) = h i a :=
|
||
begin
|
||
refine gqg_elim_compute (λa, ∥seq_colim_rel a∥) (dirsum_elim h) (seq_colim_quotient h k) (dirsum_incl A i a) ⬝ _,
|
||
exact !dirsum_elim_compute
|
||
end
|
||
|
||
definition seq_colim_glue {i : @trunctype.mk 0 ℕ _} {a : A i} : seq_colim_incl i a = seq_colim_incl (succ i) (f i a) :=
|
||
begin
|
||
refine !homomorphism_comp_compute ⬝ _,
|
||
refine gqg_eq_of_rel _ _ ⬝ (!homomorphism_comp_compute)⁻¹,
|
||
exact tr (seq_colim_rel.rmk _ _)
|
||
end
|
||
|
||
section
|
||
local abbreviation h (m : seq_colim →g A') : Πi, A i →g A' := λi, m ∘g (seq_colim_incl i)
|
||
local abbreviation k (m : seq_colim →g A') : Πi a, h m i a = h m (succ i) (f i a) :=
|
||
λ i a, !homomorphism_comp_compute ⬝ ap m (@seq_colim_glue i a) ⬝ !homomorphism_comp_compute⁻¹
|
||
|
||
definition seq_colim_unique (m : seq_colim →g A') :
|
||
Πv, seq_colim_elim (h m) (k m) v = m v :=
|
||
begin
|
||
intro v, refine (gqg_elim_unique _ (dirsum_elim (h m)) _ m _ _)⁻¹ ⬝ _,
|
||
apply dirsum_elim_unique, rotate 1, reflexivity,
|
||
intro i a, reflexivity
|
||
end
|
||
|
||
end
|
||
|
||
end
|
||
|
||
definition seq_colim_functor [constructor] {A A' : ℕ → AbGroup}
|
||
{f : Πi , A i →g A (i + 1)} {f' : Πi , A' i →g A' (i + 1)}
|
||
(h : Πi, A i →g A' i) : seq_colim A f →g seq_colim A' f' :=
|
||
sorry --_ ∘g _
|
||
|
||
|
||
end group
|