Spectral/algebra/arrow_group.hlean

207 lines
8.3 KiB
Text

import algebra.group_theory ..pointed eq2
open pi pointed algebra group eq equiv is_trunc trunc
namespace group
-- definition pmap_mul [constructor] {A B : Type*} [inf_pgroup B] (f g : A →* B) : A →* B :=
-- pmap.mk (λa, f a * g a) (ap011 mul (respect_pt f) (respect_pt g) ⬝ !one_mul)
-- definition pmap_inv [constructor] {A B : Type*} [inf_pgroup B] (f : A →* B) : A →* B :=
-- pmap.mk (λa, (f a)⁻¹) (ap inv (respect_pt f) ⬝ !one_inv)
definition pmap_mul [constructor] {A B : Type*} (f g : A →* Ω B) : A →* Ω B :=
pmap.mk (λa, f a ⬝ g a) (respect_pt f ◾ respect_pt g ⬝ !idp_con)
definition pmap_inv [constructor] {A B : Type*} (f : A →* Ω B) : A →* Ω B :=
pmap.mk (λa, (f a)⁻¹ᵖ) (respect_pt f)⁻²
definition inf_group_pmap [constructor] [instance] (A B : Type*) : inf_group (A →* Ω B) :=
begin
fapply inf_group.mk,
{ exact pmap_mul },
{ intro f g h, fapply pmap_eq,
{ intro a, exact con.assoc (f a) (g a) (h a) },
{ rexact eq_of_square (con2_assoc (respect_pt f) (respect_pt g) (respect_pt h)) }},
{ apply pconst },
{ intros f, fapply pmap_eq,
{ intro a, exact one_mul (f a) },
{ esimp, apply eq_of_square, refine _ ⬝vp !ap_id, apply natural_square_tr }},
{ intros f, fapply pmap_eq,
{ intro a, exact mul_one (f a) },
{ reflexivity }},
{ exact pmap_inv },
{ intro f, fapply pmap_eq,
{ intro a, exact con.left_inv (f a) },
{ exact !con_left_inv_idp⁻¹ }},
end
definition group_trunc_pmap [constructor] [instance] (A B : Type*) : group (trunc 0 (A →* Ω B)) :=
!trunc_group
definition Group_trunc_pmap [reducible] [constructor] (A B : Type*) : Group :=
Group.mk (trunc 0 (A →* Ω (Ω B))) _
definition Group_trunc_pmap_homomorphism [constructor] {A A' B : Type*} (f : A' →* A) :
Group_trunc_pmap A B →g Group_trunc_pmap A' B :=
begin
fapply homomorphism.mk,
{ apply trunc_functor, intro g, exact g ∘* f},
{ intro g h, induction g with g, induction h with h, apply ap tr,
fapply pmap_eq,
{ intro a, reflexivity },
{ refine _ ⬝ !idp_con⁻¹,
refine whisker_right _ !ap_con_fn ⬝ _, apply con2_con_con2 }}
end
definition Group_trunc_pmap_isomorphism [constructor] {A A' B : Type*} (f : A' ≃* A) :
Group_trunc_pmap A B ≃g Group_trunc_pmap A' B :=
begin
apply isomorphism.mk (Group_trunc_pmap_homomorphism f),
apply @is_equiv_trunc_functor,
exact to_is_equiv (pequiv_ppcompose_right f),
end
definition Group_trunc_pmap_isomorphism_refl (A B : Type*) (x : Group_trunc_pmap A B) :
Group_trunc_pmap_isomorphism (pequiv.refl A) x = x :=
begin
induction x, apply ap tr, apply eq_of_phomotopy, apply pcompose_pid
end
definition Group_trunc_pmap_pid [constructor] {A B : Type*} (f : Group_trunc_pmap A B) :
Group_trunc_pmap_homomorphism (pid A) f = f :=
begin
induction f with f, apply ap tr, apply eq_of_phomotopy, apply pcompose_pid
end
definition Group_trunc_pmap_pconst [constructor] {A A' B : Type*} (f : Group_trunc_pmap A B) :
Group_trunc_pmap_homomorphism (pconst A' A) f = 1 :=
begin
induction f with f, apply ap tr, apply eq_of_phomotopy, apply pcompose_pconst
end
definition Group_trunc_pmap_pcompose [constructor] {A A' A'' B : Type*} (f : A' →* A) (f' : A'' →* A')
(g : Group_trunc_pmap A B) : Group_trunc_pmap_homomorphism (f ∘* f') g =
Group_trunc_pmap_homomorphism f' (Group_trunc_pmap_homomorphism f g) :=
begin
induction g with g, apply ap tr, apply eq_of_phomotopy, exact !passoc⁻¹*
end
definition Group_trunc_pmap_phomotopy [constructor] {A A' B : Type*} {f f' : A' →* A} (p : f ~* f') :
@Group_trunc_pmap_homomorphism _ _ B f ~ Group_trunc_pmap_homomorphism f' :=
begin
intro g, induction g, exact ap tr (eq_of_phomotopy (pwhisker_left a p))
end
definition Group_trunc_pmap_phomotopy_refl {A A' B : Type*} (f : A' →* A)
(x : Group_trunc_pmap A B) : Group_trunc_pmap_phomotopy (phomotopy.refl f) x = idp :=
begin
induction x,
refine ap02 tr _,
refine ap eq_of_phomotopy _ ⬝ !eq_of_phomotopy_refl,
apply pwhisker_left_refl
end
definition ab_inf_group_pmap [constructor] [instance] (A B : Type*) : ab_inf_group (A →* Ω (Ω B)) :=
⦃ab_inf_group, inf_group_pmap A (Ω B), mul_comm :=
begin
intro f g, fapply pmap_eq,
{ intro a, exact eckmann_hilton (f a) (g a) },
{ rexact eq_of_square (eckmann_hilton_con2 (respect_pt f) (respect_pt g)) }
end⦄
definition ab_group_trunc_pmap [constructor] [instance] (A B : Type*) :
ab_group (trunc 0 (A →* Ω (Ω B))) :=
!trunc_ab_group
definition AbGroup_trunc_pmap [reducible] [constructor] (A B : Type*) : AbGroup :=
AbGroup.mk (trunc 0 (A →* Ω (Ω B))) _
/- Group of functions whose codomain is a group -/
definition group_pi [instance] [constructor] {A : Type} (P : A → Type) [Πa, group (P a)] : group (Πa, P a) :=
begin
fapply group.mk,
{ apply is_trunc_pi },
{ intro f g a, exact f a * g a },
{ intros, apply eq_of_homotopy, intro a, apply mul.assoc },
{ intro a, exact 1 },
{ intros, apply eq_of_homotopy, intro a, apply one_mul },
{ intros, apply eq_of_homotopy, intro a, apply mul_one },
{ intro f a, exact (f a)⁻¹ },
{ intros, apply eq_of_homotopy, intro a, apply mul.left_inv }
end
definition Group_pi [constructor] {A : Type} (P : A → Group) : Group :=
Group.mk (Πa, P a) _
/- we use superscript in the following notation, because otherwise we can never write something
like `Πg h : G, _` anymore -/
notation `Πᵍ` binders `, ` r:(scoped P, Group_pi P) := r
definition Group_pi_intro [constructor] {A : Type} {G : Group} {P : A → Group} (f : Πa, G →g P a)
: G →g Πᵍ a, P a :=
begin
fconstructor,
{ intro g a, exact f a g },
{ intro g h, apply eq_of_homotopy, intro a, exact respect_mul (f a) g h }
end
-- definition AbGroup_trunc_pmap_homomorphism [constructor] {A A' B : Type*} (f : A' →* A) :
-- AbGroup_trunc_pmap A B →g AbGroup_trunc_pmap A' B :=
-- Group_trunc_pmap_homomorphism f
/- Group of functions whose codomain is a group -/
-- definition group_arrow [instance] (A B : Type) [group B] : group (A → B) :=
-- begin
-- fapply group.mk,
-- { apply is_trunc_arrow },
-- { intro f g a, exact f a * g a },
-- { intros, apply eq_of_homotopy, intro a, apply mul.assoc },
-- { intro a, exact 1 },
-- { intros, apply eq_of_homotopy, intro a, apply one_mul },
-- { intros, apply eq_of_homotopy, intro a, apply mul_one },
-- { intro f a, exact (f a)⁻¹ },
-- { intros, apply eq_of_homotopy, intro a, apply mul.left_inv }
-- end
-- definition Group_arrow (A : Type) (G : Group) : Group :=
-- Group.mk (A → G) _
-- definition ab_group_arrow [instance] (A B : Type) [ab_group B] : ab_group (A → B) :=
-- ⦃ab_group, group_arrow A B,
-- mul_comm := by intros; apply eq_of_homotopy; intro a; apply mul.comm⦄
-- definition AbGroup_arrow (A : Type) (G : AbGroup) : AbGroup :=
-- AbGroup.mk (A → G) _
-- definition pgroup_ppmap [instance] (A B : Type*) [pgroup B] : pgroup (ppmap A B) :=
-- begin
-- fapply pgroup.mk,
-- { apply is_trunc_pmap },
-- { intro f g, apply pmap.mk (λa, f a * g a),
-- exact ap011 mul (respect_pt f) (respect_pt g) ⬝ !one_mul },
-- { intros, apply pmap_eq_of_homotopy, intro a, apply mul.assoc },
-- { intro f, apply pmap.mk (λa, (f a)⁻¹), apply inv_eq_one, apply respect_pt },
-- { intros, apply pmap_eq_of_homotopy, intro a, apply one_mul },
-- { intros, apply pmap_eq_of_homotopy, intro a, apply mul_one },
-- { intros, apply pmap_eq_of_homotopy, intro a, apply mul.left_inv }
-- end
-- definition Group_pmap (A : Type*) (G : Group) : Group :=
-- Group_of_pgroup (ppmap A (pType_of_Group G))
-- definition AbGroup_pmap (A : Type*) (G : AbGroup) : AbGroup :=
-- AbGroup.mk (A →* pType_of_Group G)
-- ⦃ ab_group, Group.struct (Group_pmap A G),
-- mul_comm := by intro f g; apply pmap_eq_of_homotopy; intro a; apply mul.comm ⦄
-- definition Group_pmap_homomorphism [constructor] {A A' : Type*} (f : A' →* A) (G : AbGroup) :
-- Group_pmap A G →g Group_pmap A' G :=
-- begin
-- fapply homomorphism.mk,
-- { intro g, exact g ∘* f},
-- { intro g h, apply pmap_eq_of_homotopy, intro a, reflexivity }
-- end
end group