548 lines
19 KiB
Text
548 lines
19 KiB
Text
/-
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Floris van Doorn, Egbert Rijke
|
|
|
|
Constructions with groups
|
|
-/
|
|
|
|
import hit.set_quotient .subgroup ..move_to_lib
|
|
|
|
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod trunc function equiv
|
|
|
|
namespace group
|
|
|
|
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
|
{N' : normal_subgroup_rel G'}
|
|
variables {A B : AbGroup}
|
|
|
|
/- Quotient Group -/
|
|
|
|
definition homotopy_of_homomorphism_eq {f g : G →g G'}(p : f = g) : f ~ g :=
|
|
λx : G , ap010 group_fun p x
|
|
|
|
definition quotient_rel [constructor] (g h : G) : Prop := N (g * h⁻¹)
|
|
|
|
variable {N}
|
|
|
|
-- We prove that quotient_rel is an equivalence relation
|
|
theorem quotient_rel_refl (g : G) : quotient_rel N g g :=
|
|
transport (λx, N x) !mul.right_inv⁻¹ (subgroup_has_one N)
|
|
|
|
theorem quotient_rel_symm (r : quotient_rel N g h) : quotient_rel N h g :=
|
|
transport (λx, N x) (!mul_inv ⬝ ap (λx, x * _) !inv_inv) (subgroup_respect_inv N r)
|
|
|
|
theorem quotient_rel_trans (r : quotient_rel N g h) (s : quotient_rel N h k)
|
|
: quotient_rel N g k :=
|
|
have H1 : N ((g * h⁻¹) * (h * k⁻¹)), from subgroup_respect_mul N r s,
|
|
have H2 : (g * h⁻¹) * (h * k⁻¹) = g * k⁻¹, from calc
|
|
(g * h⁻¹) * (h * k⁻¹) = ((g * h⁻¹) * h) * k⁻¹ : by rewrite [mul.assoc (g * h⁻¹)]
|
|
... = g * k⁻¹ : by rewrite inv_mul_cancel_right,
|
|
show N (g * k⁻¹), by rewrite [-H2]; exact H1
|
|
|
|
theorem is_equivalence_quotient_rel : is_equivalence (quotient_rel N) :=
|
|
is_equivalence.mk quotient_rel_refl
|
|
(λg h, quotient_rel_symm)
|
|
(λg h k, quotient_rel_trans)
|
|
|
|
-- We prove that quotient_rel respects inverses and multiplication, so
|
|
-- it is a congruence relation
|
|
theorem quotient_rel_resp_inv (r : quotient_rel N g h) : quotient_rel N g⁻¹ h⁻¹ :=
|
|
have H1 : N (g⁻¹ * (h * g⁻¹) * g), from
|
|
is_normal_subgroup' N g (quotient_rel_symm r),
|
|
have H2 : g⁻¹ * (h * g⁻¹) * g = g⁻¹ * h⁻¹⁻¹, from calc
|
|
g⁻¹ * (h * g⁻¹) * g = g⁻¹ * h * g⁻¹ * g : by rewrite -mul.assoc
|
|
... = g⁻¹ * h : inv_mul_cancel_right
|
|
... = g⁻¹ * h⁻¹⁻¹ : by rewrite algebra.inv_inv,
|
|
show N (g⁻¹ * h⁻¹⁻¹), by rewrite [-H2]; exact H1
|
|
|
|
theorem quotient_rel_resp_mul (r : quotient_rel N g h) (r' : quotient_rel N g' h')
|
|
: quotient_rel N (g * g') (h * h') :=
|
|
have H1 : N (g * ((g' * h'⁻¹) * h⁻¹)), from
|
|
normal_subgroup_insert N r' r,
|
|
have H2 : g * ((g' * h'⁻¹) * h⁻¹) = (g * g') * (h * h')⁻¹, from calc
|
|
g * ((g' * h'⁻¹) * h⁻¹) = g * (g' * (h'⁻¹ * h⁻¹)) : by rewrite [mul.assoc]
|
|
... = (g * g') * (h'⁻¹ * h⁻¹) : mul.assoc
|
|
... = (g * g') * (h * h')⁻¹ : by rewrite [mul_inv],
|
|
show N ((g * g') * (h * h')⁻¹), from transport (λx, N x) H2 H1
|
|
|
|
local attribute is_equivalence_quotient_rel [instance]
|
|
|
|
variable (N)
|
|
|
|
definition qg : Type := set_quotient (quotient_rel N)
|
|
|
|
variable {N}
|
|
|
|
local attribute qg [reducible]
|
|
|
|
definition quotient_one [constructor] : qg N := class_of one
|
|
definition quotient_inv [unfold 3] : qg N → qg N :=
|
|
quotient_unary_map has_inv.inv (λg g' r, quotient_rel_resp_inv r)
|
|
definition quotient_mul [unfold 3 4] : qg N → qg N → qg N :=
|
|
quotient_binary_map has_mul.mul (λg g' r h h' r', quotient_rel_resp_mul r r')
|
|
|
|
section
|
|
local notation 1 := quotient_one
|
|
local postfix ⁻¹ := quotient_inv
|
|
local infix * := quotient_mul
|
|
|
|
theorem quotient_mul_assoc (g₁ g₂ g₃ : qg N) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
|
|
begin
|
|
refine set_quotient.rec_prop _ g₁,
|
|
refine set_quotient.rec_prop _ g₂,
|
|
refine set_quotient.rec_prop _ g₃,
|
|
clear g₁ g₂ g₃, intro g₁ g₂ g₃,
|
|
exact ap class_of !mul.assoc
|
|
end
|
|
|
|
theorem quotient_one_mul (g : qg N) : 1 * g = g :=
|
|
begin
|
|
refine set_quotient.rec_prop _ g, clear g, intro g,
|
|
exact ap class_of !one_mul
|
|
end
|
|
|
|
theorem quotient_mul_one (g : qg N) : g * 1 = g :=
|
|
begin
|
|
refine set_quotient.rec_prop _ g, clear g, intro g,
|
|
exact ap class_of !mul_one
|
|
end
|
|
|
|
theorem quotient_mul_left_inv (g : qg N) : g⁻¹ * g = 1 :=
|
|
begin
|
|
refine set_quotient.rec_prop _ g, clear g, intro g,
|
|
exact ap class_of !mul.left_inv
|
|
end
|
|
|
|
theorem quotient_mul_comm {G : AbGroup} {N : normal_subgroup_rel G} (g h : qg N)
|
|
: g * h = h * g :=
|
|
begin
|
|
refine set_quotient.rec_prop _ g, clear g, intro g,
|
|
refine set_quotient.rec_prop _ h, clear h, intro h,
|
|
apply ap class_of, esimp, apply mul.comm
|
|
end
|
|
|
|
end
|
|
|
|
variable (N)
|
|
definition group_qg [constructor] : group (qg N) :=
|
|
group.mk _ quotient_mul quotient_mul_assoc quotient_one quotient_one_mul quotient_mul_one
|
|
quotient_inv quotient_mul_left_inv
|
|
|
|
definition quotient_group [constructor] : Group :=
|
|
Group.mk _ (group_qg N)
|
|
|
|
definition ab_group_qg [constructor] {G : AbGroup} (N : normal_subgroup_rel G)
|
|
: ab_group (qg N) :=
|
|
⦃ab_group, group_qg N, mul_comm := quotient_mul_comm⦄
|
|
|
|
definition quotient_ab_group [constructor] {G : AbGroup} (N : subgroup_rel G)
|
|
: AbGroup :=
|
|
AbGroup.mk _ (ab_group_qg (normal_subgroup_rel_ab N))
|
|
|
|
definition qg_map [constructor] : G →g quotient_group N :=
|
|
homomorphism.mk class_of (λ g h, idp)
|
|
|
|
definition ab_qg_map {G : AbGroup} (N : subgroup_rel G) : G →g quotient_ab_group N :=
|
|
begin
|
|
fapply homomorphism.mk,
|
|
exact class_of,
|
|
exact λ g h, idp
|
|
end
|
|
|
|
definition is_surjective_ab_qg_map {A : AbGroup} (N : subgroup_rel A) : is_surjective (ab_qg_map N) :=
|
|
begin
|
|
intro x, induction x,
|
|
fapply image.mk,
|
|
exact a, reflexivity,
|
|
apply is_prop.elimo
|
|
end
|
|
|
|
namespace quotient
|
|
notation `⟦`:max a `⟧`:0 := qg_map _ a
|
|
end quotient
|
|
|
|
open quotient
|
|
variable {N}
|
|
|
|
definition qg_map_eq_one (g : G) (H : N g) : qg_map N g = 1 :=
|
|
begin
|
|
apply eq_of_rel,
|
|
have e : (g * 1⁻¹ = g),
|
|
from calc
|
|
g * 1⁻¹ = g * 1 : one_inv
|
|
... = g : mul_one,
|
|
unfold quotient_rel, rewrite e, exact H
|
|
end
|
|
|
|
definition ab_qg_map_eq_one {K : subgroup_rel A} (g :A) (H : K g) : ab_qg_map K g = 1 :=
|
|
begin
|
|
apply eq_of_rel,
|
|
have e : (g * 1⁻¹ = g),
|
|
from calc
|
|
g * 1⁻¹ = g * 1 : one_inv
|
|
... = g : mul_one,
|
|
unfold quotient_rel, xrewrite e, exact H
|
|
end
|
|
|
|
--- there should be a smarter way to do this!! Please have a look, Floris.
|
|
definition rel_of_qg_map_eq_one (g : G) (H : qg_map N g = 1) : N g :=
|
|
begin
|
|
have e : (g * 1⁻¹ = g),
|
|
from calc
|
|
g * 1⁻¹ = g * 1 : one_inv
|
|
... = g : mul_one,
|
|
rewrite (inverse e),
|
|
apply rel_of_eq _ H
|
|
end
|
|
|
|
definition rel_of_ab_qg_map_eq_one {K : subgroup_rel A} (a :A) (H : ab_qg_map K a = 1) : K a :=
|
|
begin
|
|
have e : (a * 1⁻¹ = a),
|
|
from calc
|
|
a * 1⁻¹ = a * 1 : one_inv
|
|
... = a : mul_one,
|
|
rewrite (inverse e),
|
|
apply rel_of_eq _ H
|
|
end
|
|
|
|
definition quotient_group_elim_fun [unfold 6] (f : G →g G') (H : Π⦃g⦄, N g → f g = 1)
|
|
(g : quotient_group N) : G' :=
|
|
begin
|
|
refine set_quotient.elim f _ g,
|
|
intro g h K,
|
|
apply eq_of_mul_inv_eq_one,
|
|
have e : f (g * h⁻¹) = f g * (f h)⁻¹,
|
|
from calc
|
|
f (g * h⁻¹) = f g * (f h⁻¹) : to_respect_mul
|
|
... = f g * (f h)⁻¹ : to_respect_inv,
|
|
rewrite (inverse e),
|
|
apply H, exact K
|
|
end
|
|
|
|
definition quotient_group_elim [constructor] (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : quotient_group N →g G' :=
|
|
begin
|
|
fapply homomorphism.mk,
|
|
-- define function
|
|
{ exact quotient_group_elim_fun f H },
|
|
{ intro g h, induction g using set_quotient.rec_prop with g,
|
|
induction h using set_quotient.rec_prop with h,
|
|
krewrite (inverse (to_respect_mul (qg_map N) g h)),
|
|
unfold qg_map, esimp, exact to_respect_mul f g h }
|
|
end
|
|
|
|
definition quotient_group_compute (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) :
|
|
quotient_group_elim f H ∘g qg_map N ~ f :=
|
|
begin
|
|
intro g, reflexivity
|
|
end
|
|
|
|
definition gelim_unique (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (k : quotient_group N →g G')
|
|
: ( k ∘g qg_map N ~ f ) → k ~ quotient_group_elim f H :=
|
|
begin
|
|
intro K cg, induction cg using set_quotient.rec_prop with g,
|
|
exact K g
|
|
end
|
|
|
|
definition ab_gelim_unique {K : subgroup_rel A} (f : A →g B) (H : Π (a :A), K a → f a = 1) (k : quotient_ab_group K →g B)
|
|
: ( k ∘g ab_qg_map K ~ f) → k ~ quotient_group_elim f H :=
|
|
begin
|
|
fapply gelim_unique,
|
|
end
|
|
|
|
definition qg_universal_property (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) :
|
|
is_contr (Σ(g : quotient_group N →g G'), g ∘g qg_map N ~ f) :=
|
|
begin
|
|
fapply is_contr.mk,
|
|
-- give center of contraction
|
|
{ fapply sigma.mk, exact quotient_group_elim f H, exact quotient_group_compute f H },
|
|
-- give contraction
|
|
{ intro pair, induction pair with g p, fapply sigma_eq,
|
|
{esimp, apply homomorphism_eq, symmetry, exact gelim_unique f H g p},
|
|
{fapply is_prop.elimo} }
|
|
end
|
|
|
|
definition ab_qg_universal_property {K : subgroup_rel A} (f : A →g B) (H : Π (a :A), K a → f a = 1) :
|
|
is_contr ((Σ(g : quotient_ab_group K →g B), g ∘g ab_qg_map K ~ f) ) :=
|
|
begin
|
|
fapply qg_universal_property,
|
|
exact H
|
|
end
|
|
|
|
definition quotient_group_functor [constructor] (φ : G →g G') (h : Πg, N g → N' (φ g)) :
|
|
quotient_group N →g quotient_group N' :=
|
|
begin
|
|
apply quotient_group_elim (qg_map N' ∘g φ),
|
|
intro g Ng, esimp,
|
|
refine qg_map_eq_one (φ g) (h g Ng)
|
|
end
|
|
|
|
------------------------------------------------
|
|
-- FIRST ISOMORPHISM THEOREM
|
|
------------------------------------------------
|
|
|
|
|
|
definition kernel_quotient_extension {A B : AbGroup} (f : A →g B) : quotient_ab_group (kernel_subgroup f) →g B :=
|
|
begin
|
|
fapply quotient_group_elim f, intro a, intro p, exact p
|
|
end
|
|
|
|
definition kernel_quotient_extension_triangle {A B : AbGroup} (f : A →g B) :
|
|
kernel_quotient_extension f ∘g ab_qg_map (kernel_subgroup f) ~ f :=
|
|
begin
|
|
intro a,
|
|
apply quotient_group_compute
|
|
end
|
|
|
|
definition is_embedding_kernel_quotient_extension {A B : AbGroup} (f : A →g B) :
|
|
is_embedding (kernel_quotient_extension f) :=
|
|
begin
|
|
fapply is_embedding_of_is_mul_hom,
|
|
intro x,
|
|
note H := is_surjective_ab_qg_map (kernel_subgroup f) x,
|
|
induction H, induction p,
|
|
intro q,
|
|
apply qg_map_eq_one,
|
|
refine _ ⬝ q,
|
|
symmetry,
|
|
rexact kernel_quotient_extension_triangle f a
|
|
end
|
|
|
|
definition ab_group_quotient_homomorphism (A B : AbGroup)(K : subgroup_rel A)(L : subgroup_rel B) (f : A →g B)
|
|
(p : Π(a:A), K(a) → L(f a)) : quotient_ab_group K →g quotient_ab_group L :=
|
|
begin
|
|
fapply quotient_group_elim,
|
|
exact (ab_qg_map L) ∘g f,
|
|
intro a,
|
|
intro k,
|
|
exact @ab_qg_map_eq_one B L (f a) (p a k),
|
|
end
|
|
|
|
definition ab_group_kernel_factor {A B C: AbGroup} (f : A →g B)(g : A →g C){i : C →g B}(H : f = i ∘g g )
|
|
: Π a:A , kernel_subgroup(g)(a) → kernel_subgroup(f)(a) :=
|
|
begin
|
|
intro a,
|
|
intro p,
|
|
exact calc
|
|
f a = i (g a) : homotopy_of_eq (ap group_fun H) a
|
|
... = i 1 : ap i p
|
|
... = 1 : respect_one i
|
|
end
|
|
|
|
definition ab_group_triv_kernel_factor {A B C: AbGroup} (f : A →g B)(g : A →g C){i : C →g B}(H : f = i ∘g g ) :
|
|
is_trivial_subgroup _ (kernel_subgroup(f)) → is_trivial_subgroup _ (kernel_subgroup(g)) :=
|
|
begin
|
|
intro p,
|
|
intro a,
|
|
intro q,
|
|
fapply p,
|
|
exact ab_group_kernel_factor f g H a q
|
|
end
|
|
|
|
definition triv_kern_is_embedding {A B : AbGroup} (f : A →g B):
|
|
is_trivial_subgroup _ (kernel_subgroup(f)) → is_embedding(f) :=
|
|
begin
|
|
intro p,
|
|
fapply is_embedding_of_is_mul_hom,
|
|
intro a q,
|
|
apply p,
|
|
exact q
|
|
end
|
|
|
|
definition ab_group_kernel_equivalent {A B : AbGroup} (C : AbGroup) (f : A →g B)(g : A →g C)(i : C →g B)(H : f = i ∘g g )(K : is_embedding i)
|
|
: Π a:A , kernel_subgroup(g)(a) ↔ kernel_subgroup(f)(a) :=
|
|
begin
|
|
intro a,
|
|
fapply iff.intro,
|
|
exact ab_group_kernel_factor f g H a,
|
|
intro p,
|
|
apply @is_injective_of_is_embedding _ _ i _ (g a) 1,
|
|
exact calc
|
|
i (g a) = f a : (homotopy_of_eq (ap group_fun H) a)⁻¹
|
|
... = 1 : p
|
|
... = i 1 : (respect_one i)⁻¹
|
|
end
|
|
|
|
definition ab_group_kernel_image_lift (A B : AbGroup) (f : A →g B)
|
|
: Π a : A, kernel_subgroup(image_lift(f))(a) ↔ kernel_subgroup(f)(a) :=
|
|
begin
|
|
fapply ab_group_kernel_equivalent (ab_image f) (f) (image_lift(f)) (image_incl(f)),
|
|
exact image_factor f,
|
|
exact is_embedding_of_is_injective (image_incl_injective(f)),
|
|
end
|
|
|
|
definition ab_group_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
|
|
: quotient_ab_group (kernel_subgroup f) →g ab_image (f) :=
|
|
begin
|
|
fapply quotient_group_elim (image_lift f), intro a, intro p,
|
|
apply iff.mpr (ab_group_kernel_image_lift _ _ f a) p
|
|
end
|
|
|
|
definition ab_group_kernel_quotient_to_image_domain_triangle {A B : AbGroup} (f : A →g B)
|
|
: ab_group_kernel_quotient_to_image (f) ∘g ab_qg_map (kernel_subgroup (f)) ~ image_lift(f) :=
|
|
begin
|
|
intros a,
|
|
esimp,
|
|
end
|
|
|
|
definition ab_group_kernel_quotient_to_image_codomain_triangle {A B : AbGroup} (f : A →g B)
|
|
: image_incl f ∘g ab_group_kernel_quotient_to_image f ~ kernel_quotient_extension f :=
|
|
begin
|
|
intro x,
|
|
induction x,
|
|
reflexivity,
|
|
fapply is_prop.elimo
|
|
end
|
|
|
|
definition is_surjective_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
|
|
: is_surjective (ab_group_kernel_quotient_to_image f) :=
|
|
begin
|
|
fapply @is_surjective_factor A _ (image f) _ _ _ (group_fun (ab_qg_map (kernel_subgroup f))),
|
|
exact image_lift f,
|
|
apply quotient_group_compute,
|
|
exact is_surjective_image_lift f
|
|
end
|
|
|
|
definition is_embedding_kernel_quotient_to_image {A B : AbGroup} (f : A →g B)
|
|
: is_embedding (ab_group_kernel_quotient_to_image f) :=
|
|
begin
|
|
fapply @is_embedding_factor _ (image f) B _ _ _ (ab_group_kernel_quotient_to_image f) (image_incl f) (kernel_quotient_extension f),
|
|
exact ab_group_kernel_quotient_to_image_codomain_triangle f,
|
|
exact is_embedding_kernel_quotient_extension f
|
|
end
|
|
|
|
definition ab_group_first_iso_thm {A B : AbGroup} (f : A →g B)
|
|
: quotient_ab_group (kernel_subgroup f) ≃g ab_image f :=
|
|
begin
|
|
fapply isomorphism.mk,
|
|
exact ab_group_kernel_quotient_to_image f,
|
|
fapply is_equiv_of_is_surjective_of_is_embedding,
|
|
exact is_embedding_kernel_quotient_to_image f,
|
|
exact is_surjective_kernel_quotient_to_image f
|
|
end
|
|
|
|
definition codomain_surjection_is_quotient {A B : AbGroup} (f : A →g B)( H : is_surjective f)
|
|
: quotient_ab_group (kernel_subgroup f) ≃g B :=
|
|
begin
|
|
exact (ab_group_first_iso_thm f) ⬝g (iso_surjection_ab_image_incl f H)
|
|
end
|
|
|
|
definition codomain_surjection_is_quotient_triangle {A B : AbGroup} (f : A →g B)( H : is_surjective f)
|
|
: codomain_surjection_is_quotient (f)(H) ∘g ab_qg_map (kernel_subgroup f) ~ f :=
|
|
begin
|
|
intro a,
|
|
esimp
|
|
end
|
|
|
|
-- print iff.mpr
|
|
/- set generating normal subgroup -/
|
|
|
|
section
|
|
|
|
parameters {A₁ : AbGroup} (S : A₁ → Prop)
|
|
variable {A₂ : AbGroup}
|
|
|
|
inductive generating_relation' : A₁ → Type :=
|
|
| rincl : Π{g}, S g → generating_relation' g
|
|
| rmul : Π{g h}, generating_relation' g → generating_relation' h → generating_relation' (g * h)
|
|
| rinv : Π{g}, generating_relation' g → generating_relation' g⁻¹
|
|
| rone : generating_relation' 1
|
|
open generating_relation'
|
|
definition generating_relation (g : A₁) : Prop := ∥ generating_relation' g ∥
|
|
local abbreviation R := generating_relation
|
|
definition gr_one : R 1 := tr (rone S)
|
|
definition gr_inv (g : A₁) : R g → R g⁻¹ :=
|
|
trunc_functor -1 rinv
|
|
definition gr_mul (g h : A₁) : R g → R h → R (g * h) :=
|
|
trunc_functor2 rmul
|
|
|
|
definition normal_generating_relation : subgroup_rel A₁ :=
|
|
⦃ subgroup_rel,
|
|
R := R,
|
|
Rone := gr_one,
|
|
Rinv := gr_inv,
|
|
Rmul := gr_mul⦄
|
|
|
|
parameter (A₁)
|
|
definition quotient_ab_group_gen : AbGroup := quotient_ab_group normal_generating_relation
|
|
|
|
definition gqg_map [constructor] : A₁ →g quotient_ab_group_gen :=
|
|
qg_map _
|
|
|
|
parameter {A₁}
|
|
definition gqg_eq_of_rel {g h : A₁} (H : S (g * h⁻¹)) : gqg_map g = gqg_map h :=
|
|
eq_of_rel (tr (rincl H))
|
|
|
|
-- this one might work if the previous one doesn't (maybe make this the default one?)
|
|
definition gqg_eq_of_rel' {g h : A₁} (H : S (g * h⁻¹)) : class_of g = class_of h :> quotient_ab_group_gen :=
|
|
gqg_eq_of_rel H
|
|
|
|
definition gqg_elim [constructor] (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1)
|
|
: quotient_ab_group_gen →g A₂ :=
|
|
begin
|
|
apply quotient_group_elim f,
|
|
intro g r, induction r with r,
|
|
induction r with g s g h r r' IH1 IH2 g r IH,
|
|
{ exact H s },
|
|
{ exact !respect_mul ⬝ ap011 mul IH1 IH2 ⬝ !one_mul },
|
|
{ exact !respect_inv ⬝ ap inv IH ⬝ !one_inv },
|
|
{ apply respect_one }
|
|
end
|
|
|
|
definition gqg_elim_compute (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1)
|
|
: gqg_elim f H ∘g gqg_map ~ f :=
|
|
begin
|
|
intro g, reflexivity
|
|
end
|
|
|
|
definition gqg_elim_unique (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1)
|
|
(k : quotient_ab_group_gen →g A₂) : ( k ∘g gqg_map ~ f ) → k ~ gqg_elim f H :=
|
|
!gelim_unique
|
|
|
|
end
|
|
|
|
end group
|
|
|
|
namespace group
|
|
|
|
variables {G H K : Group} {R : normal_subgroup_rel G} {S : normal_subgroup_rel H}
|
|
{T : normal_subgroup_rel K}
|
|
|
|
definition quotient_ab_group_functor [constructor] {G H : AbGroup} {R : subgroup_rel G}
|
|
{S : subgroup_rel H} (φ : G →g H)
|
|
(h : Πg, R g → S (φ g)) : quotient_ab_group R →g quotient_ab_group S :=
|
|
quotient_group_functor φ h
|
|
|
|
theorem quotient_group_functor_compose (ψ : H →g K) (φ : G →g H)
|
|
(hψ : Πg, S g → T (ψ g)) (hφ : Πg, R g → S (φ g)) :
|
|
quotient_group_functor ψ hψ ∘g quotient_group_functor φ hφ ~
|
|
quotient_group_functor (ψ ∘g φ) (λg, proof hψ (φ g) qed ∘ hφ g) :=
|
|
begin
|
|
intro g, induction g using set_quotient.rec_prop with g hg, reflexivity
|
|
end
|
|
|
|
definition quotient_group_functor_gid :
|
|
quotient_group_functor (gid G) (λg, id) ~ gid (quotient_group R) :=
|
|
begin
|
|
intro g, induction g using set_quotient.rec_prop with g hg, reflexivity
|
|
end
|
|
|
|
definition quotient_group_functor_mul.{u₁ v₁ u₂ v₂}
|
|
{G H : AbGroup} {R : subgroup_rel.{u₁ v₁} G} {S : subgroup_rel.{u₂ v₂} H}
|
|
(ψ φ : G →g H) (hψ : Πg, R g → S (ψ g)) (hφ : Πg, R g → S (φ g)) :
|
|
homomorphism_mul (quotient_ab_group_functor ψ hψ) (quotient_ab_group_functor φ hφ) ~
|
|
quotient_ab_group_functor (homomorphism_mul ψ φ)
|
|
(λg hg, subgroup_respect_mul S (hψ g hg) (hφ g hg)) :=
|
|
begin
|
|
intro g, induction g using set_quotient.rec_prop with g hg, reflexivity
|
|
end
|
|
|
|
definition quotient_group_functor_homotopy {ψ φ : G →g H} (hψ : Πg, R g → S (ψ g))
|
|
(hφ : Πg, R g → S (φ g)) (p : φ ~ ψ) :
|
|
quotient_group_functor φ hφ ~ quotient_group_functor ψ hψ :=
|
|
begin
|
|
intro g, induction g using set_quotient.rec_prop with g hg,
|
|
exact ap set_quotient.class_of (p g)
|
|
end
|
|
|
|
end group
|