408 lines
19 KiB
Text
408 lines
19 KiB
Text
/-
|
||
Copyright (c) 2016 Michael Shulman. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Michael Shulman
|
||
|
||
-/
|
||
|
||
import types.int types.pointed types.trunc homotopy.susp algebra.homotopy_group homotopy.chain_complex cubical
|
||
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi
|
||
|
||
/-----------------------------------------
|
||
Stuff that should go in other files
|
||
-----------------------------------------/
|
||
|
||
attribute equiv.symm equiv.trans is_equiv.is_equiv_ap fiber.equiv_postcompose fiber.equiv_precompose pequiv.to_pmap pequiv._trans_of_to_pmap [constructor]
|
||
attribute is_equiv.eq_of_fn_eq_fn' [unfold 3]
|
||
|
||
namespace sigma
|
||
|
||
definition sigma_equiv_sigma_left' [constructor] {A A' : Type} {B : A' → Type} (Hf : A ≃ A') : (Σa, B (Hf a)) ≃ (Σa', B a') :=
|
||
sigma_equiv_sigma Hf (λa, erfl)
|
||
|
||
end sigma
|
||
open sigma
|
||
|
||
namespace eq
|
||
|
||
definition pathover_eq_Fl' {A B : Type} {f : A → B} {a₁ a₂ : A} {b : B} (p : a₁ = a₂) (q : f a₂ = b) : (ap f p) ⬝ q =[p] q :=
|
||
by induction p; induction q; exact idpo
|
||
|
||
end eq open eq
|
||
|
||
namespace pointed
|
||
|
||
definition pequiv_compose {A B C : Type*} (g : B ≃* C) (f : A ≃* B) : A ≃* C :=
|
||
pequiv_of_pmap (g ∘* f) (is_equiv_compose f g)
|
||
|
||
infixr ` ∘*ᵉ `:60 := pequiv_compose
|
||
|
||
definition pmap.sigma_char [constructor] {A B : Type*} : (A →* B) ≃ Σ(f : A → B), f pt = pt :=
|
||
begin
|
||
fapply equiv.MK : intros f,
|
||
{ exact ⟨to_fun f , resp_pt f⟩ },
|
||
all_goals cases f with f p,
|
||
{ exact pmap.mk f p },
|
||
all_goals reflexivity
|
||
end
|
||
|
||
definition phomotopy.sigma_char [constructor] {A B : Type*} (f g : A →* B) : (f ~* g) ≃ Σ(p : f ~ g), p pt ⬝ resp_pt g = resp_pt f :=
|
||
begin
|
||
fapply equiv.MK : intros h,
|
||
{ exact ⟨h , to_homotopy_pt h⟩ },
|
||
all_goals cases h with h p,
|
||
{ exact phomotopy.mk h p },
|
||
all_goals reflexivity
|
||
end
|
||
|
||
definition pmap_eq_equiv {A B : Type*} (f g : A →* B) : (f = g) ≃ (f ~* g) :=
|
||
calc (f = g) ≃ pmap.sigma_char f = pmap.sigma_char g
|
||
: eq_equiv_fn_eq pmap.sigma_char f g
|
||
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), pathover (λh, h pt = pt) (resp_pt f) p (resp_pt g)
|
||
: sigma_eq_equiv _ _
|
||
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), resp_pt f = ap (λh, h pt) p ⬝ resp_pt g
|
||
: sigma_equiv_sigma_right (λp, pathover_eq_equiv_Fl p (resp_pt f) (resp_pt g))
|
||
... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), resp_pt f = ap10 p pt ⬝ resp_pt g
|
||
: sigma_equiv_sigma_right (λp, equiv_eq_closed_right _ (whisker_right (ap_eq_ap10 p _) _))
|
||
... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), resp_pt f = p pt ⬝ resp_pt g
|
||
: sigma_equiv_sigma_left' eq_equiv_homotopy
|
||
... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), p pt ⬝ resp_pt g = resp_pt f
|
||
: sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
|
||
... ≃ (f ~* g) : phomotopy.sigma_char f g
|
||
|
||
definition loop_pmap_commute (A B : Type*) : Ω(ppmap A B) ≃* (ppmap A (Ω B)) :=
|
||
pequiv_of_equiv
|
||
(calc Ω(ppmap A B) /- ≃ (pconst A B = pconst A B) : erfl
|
||
... -/ ≃ (pconst A B ~* pconst A B) : pmap_eq_equiv _ _
|
||
... ≃ Σ(p : pconst A B ~ pconst A B), p pt ⬝ rfl = rfl : phomotopy.sigma_char
|
||
... /- ≃ Σ(f : A → Ω B), f pt = pt : erfl
|
||
... -/ ≃ (A →* Ω B) : pmap.sigma_char)
|
||
(by reflexivity)
|
||
|
||
definition ppcompose_left {A B C : Type*} (g : B →* C) : ppmap A B →* ppmap A C :=
|
||
pmap.mk (pcompose g) (eq_of_phomotopy (phomotopy.mk (λa, resp_pt g) (idp_con _)⁻¹))
|
||
|
||
definition is_equiv_ppcompose_left [instance] {A B C : Type*} (g : B →* C) [H : is_equiv g] : is_equiv (@ppcompose_left A B C g) :=
|
||
begin
|
||
fapply is_equiv.adjointify,
|
||
{ exact (ppcompose_left (pequiv_of_pmap g H)⁻¹ᵉ*) },
|
||
all_goals (intros f; esimp; apply eq_of_phomotopy),
|
||
{ exact calc g ∘* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* f) ~* (g ∘* (pequiv_of_pmap g H)⁻¹ᵉ*) ∘* f : passoc
|
||
... ~* pid _ ∘* f : pwhisker_right f (pright_inv (pequiv_of_pmap g H))
|
||
... ~* f : pid_comp f },
|
||
{ exact calc (pequiv_of_pmap g H)⁻¹ᵉ* ∘* (g ∘* f) ~* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* g) ∘* f : passoc
|
||
... ~* pid _ ∘* f : pwhisker_right f (pleft_inv (pequiv_of_pmap g H))
|
||
... ~* f : pid_comp f }
|
||
end
|
||
|
||
definition equiv_ppcompose_left {A B C : Type*} (g : B ≃* C) : ppmap A B ≃* ppmap A C :=
|
||
pequiv_of_pmap (ppcompose_left g) _
|
||
|
||
definition pcompose_pconst {A B C : Type*} (f : B →* C) : f ∘* pconst A B ~* pconst A C :=
|
||
phomotopy.mk (λa, respect_pt f) (idp_con _)⁻¹
|
||
|
||
definition pconst_pcompose {A B C : Type*} (f : A →* B) : pconst B C ∘* f ~* pconst A C :=
|
||
phomotopy.mk (λa, rfl) (ap_constant _ _)⁻¹
|
||
|
||
definition ap1_pconst (A B : Type*) : Ω→(pconst A B) ~* pconst (Ω A) (Ω B) :=
|
||
phomotopy.mk (λp, idp_con _ ⬝ ap_constant p pt) rfl
|
||
|
||
definition pfiber_loop_space {A B : Type*} (f : A →* B) : pfiber (Ω→ f) ≃* Ω (pfiber f) :=
|
||
pequiv_of_equiv
|
||
(calc pfiber (Ω→ f) ≃ Σ(p : Point A = Point A), ap1 f p = rfl : (fiber.sigma_char (ap1 f) (Point (Ω B)))
|
||
... ≃ Σ(p : Point A = Point A), (respect_pt f) = ap f p ⬝ (respect_pt f) : (sigma_equiv_sigma_right (λp,
|
||
calc (ap1 f p = rfl) ≃ !respect_pt⁻¹ ⬝ (ap f p ⬝ !respect_pt) = rfl : equiv_eq_closed_left _ (con.assoc _ _ _)
|
||
... ≃ ap f p ⬝ (respect_pt f) = (respect_pt f) : eq_equiv_inv_con_eq_idp
|
||
... ≃ (respect_pt f) = ap f p ⬝ (respect_pt f) : eq_equiv_eq_symm))
|
||
... ≃ fiber.mk (Point A) (respect_pt f) = fiber.mk pt (respect_pt f) : fiber_eq_equiv
|
||
... ≃ Ω (pfiber f) : erfl)
|
||
(begin cases f with f p, cases A with A a, cases B with B b, esimp at p, esimp at f, induction p, reflexivity end)
|
||
|
||
definition pfiber_equiv_of_phomotopy {A B : Type*} {f g : A →* B} (h : f ~* g) : pfiber f ≃* pfiber g :=
|
||
begin
|
||
fapply pequiv_of_equiv,
|
||
{ refine (fiber.sigma_char f pt ⬝e _ ⬝e (fiber.sigma_char g pt)⁻¹ᵉ),
|
||
apply sigma_equiv_sigma_right, intros a,
|
||
apply equiv_eq_closed_left, apply (to_homotopy h) },
|
||
{ refine (fiber_eq rfl _),
|
||
change (h pt)⁻¹ ⬝ respect_pt f = idp ⬝ respect_pt g,
|
||
rewrite idp_con, apply inv_con_eq_of_eq_con, symmetry, exact (to_homotopy_pt h) }
|
||
end
|
||
|
||
definition transport_fiber_equiv [constructor] {A B : Type} (f : A → B) {b1 b2 : B} (p : b1 = b2) : fiber f b1 ≃ fiber f b2 :=
|
||
calc fiber f b1 ≃ Σa, f a = b1 : fiber.sigma_char
|
||
... ≃ Σa, f a = b2 : sigma_equiv_sigma_right (λa, equiv_eq_closed_right (f a) p)
|
||
... ≃ fiber f b2 : fiber.sigma_char
|
||
|
||
definition pequiv_postcompose {A B B' : Type*} (f : A →* B) (g : B ≃* B') : pfiber (g ∘* f) ≃* pfiber f :=
|
||
begin
|
||
fapply pequiv_of_equiv, esimp,
|
||
refine transport_fiber_equiv (g ∘* f) (respect_pt g)⁻¹ ⬝e fiber.equiv_postcompose f g (Point B),
|
||
esimp, apply (ap (fiber.mk (Point A))), refine !con.assoc ⬝ _, apply inv_con_eq_of_eq_con,
|
||
rewrite [con.assoc, con.right_inv, con_idp, -ap_compose'], apply ap_con_eq_con
|
||
end
|
||
|
||
definition pequiv_precompose {A A' B : Type*} (f : A →* B) (g : A' ≃* A) : pfiber (f ∘* g) ≃* pfiber f :=
|
||
begin
|
||
fapply pequiv_of_equiv, esimp,
|
||
refine fiber.equiv_precompose f g (Point B),
|
||
esimp, apply (eq_of_fn_eq_fn (fiber.sigma_char _ _)), fapply sigma_eq: esimp,
|
||
{ apply respect_pt g },
|
||
{ apply pathover_eq_Fl' }
|
||
end
|
||
|
||
definition pfiber_equiv_of_square {A B C D : Type*} {f : A →* B} {g : C →* D} {h : A ≃* C} {k : B ≃* D} (s : k ∘* f ~* g ∘* h)
|
||
: pfiber f ≃* pfiber g :=
|
||
calc pfiber f ≃* pfiber (k ∘* f) : pequiv_postcompose
|
||
... ≃* pfiber (g ∘* h) : pfiber_equiv_of_phomotopy s
|
||
... ≃* pfiber g : pequiv_precompose
|
||
|
||
definition loop_ppi_commute {A : Type} (B : A → Type*) : Ω(ppi B) ≃* Π*a, Ω (B a) :=
|
||
pequiv_of_equiv eq_equiv_homotopy rfl
|
||
|
||
definition equiv_ppi_right {A : Type} {P Q : A → Type*} (g : Πa, P a ≃* Q a)
|
||
: (Π*a, P a) ≃* (Π*a, Q a) :=
|
||
pequiv_of_equiv (pi_equiv_pi_right g)
|
||
begin esimp, apply eq_of_homotopy, intros a, esimp, exact (respect_pt (g a)) end
|
||
|
||
end pointed
|
||
open pointed
|
||
|
||
/---------------------
|
||
Basic definitions
|
||
---------------------/
|
||
|
||
open succ_str
|
||
|
||
/- The basic definitions of spectra and prespectra make sense for any successor-structure. -/
|
||
|
||
structure gen_prespectrum (N : succ_str) :=
|
||
(deloop : N → Type*)
|
||
(glue : Π(n:N), (deloop n) →* (Ω (deloop (S n))))
|
||
|
||
attribute gen_prespectrum.deloop [coercion]
|
||
|
||
structure is_spectrum [class] {N : succ_str} (E : gen_prespectrum N) :=
|
||
(is_equiv_glue : Πn, is_equiv (gen_prespectrum.glue E n))
|
||
|
||
attribute is_spectrum.is_equiv_glue [instance]
|
||
|
||
structure gen_spectrum (N : succ_str) :=
|
||
(to_prespectrum : gen_prespectrum N)
|
||
(to_is_spectrum : is_spectrum to_prespectrum)
|
||
|
||
attribute gen_spectrum.to_prespectrum [coercion]
|
||
attribute gen_spectrum.to_is_spectrum [instance]
|
||
|
||
-- Classically, spectra and prespectra use the successor structure +ℕ.
|
||
-- But we will use +ℤ instead, to reduce case analysis later on.
|
||
|
||
abbreviation spectrum := gen_spectrum +ℤ
|
||
abbreviation spectrum.mk := @gen_spectrum.mk +ℤ
|
||
|
||
namespace spectrum
|
||
|
||
definition glue {{N : succ_str}} := @gen_prespectrum.glue N
|
||
--definition glue := (@gen_prespectrum.glue +ℤ)
|
||
definition equiv_glue {N : succ_str} (E : gen_prespectrum N) [H : is_spectrum E] (n:N) : (E n) ≃* (Ω (E (S n))) :=
|
||
pequiv_of_pmap (glue E n) (is_spectrum.is_equiv_glue E n)
|
||
|
||
-- Sometimes an ℕ-indexed version does arise naturally, however, so
|
||
-- we give a standard way to extend an ℕ-indexed (pre)spectrum to a
|
||
-- ℤ-indexed one.
|
||
|
||
definition psp_of_nat_indexed [constructor] (E : gen_prespectrum +ℕ) : gen_prespectrum +ℤ :=
|
||
gen_prespectrum.mk
|
||
(λ(n:ℤ), match n with
|
||
| of_nat k := E k
|
||
| neg_succ_of_nat k := Ω[succ k] (E 0)
|
||
end)
|
||
begin
|
||
intros n, cases n with n n: esimp,
|
||
{ exact (gen_prespectrum.glue E n) },
|
||
cases n with n,
|
||
{ exact (pid _) },
|
||
{ exact (pid _) }
|
||
end
|
||
|
||
definition is_spectrum_of_nat_indexed [instance] (E : gen_prespectrum +ℕ) [H : is_spectrum E] : is_spectrum (psp_of_nat_indexed E) :=
|
||
begin
|
||
apply is_spectrum.mk, intros n, cases n with n n: esimp,
|
||
{ apply is_spectrum.is_equiv_glue },
|
||
cases n with n: apply is_equiv_id
|
||
end
|
||
|
||
protected definition of_nat_indexed (E : gen_prespectrum +ℕ) [H : is_spectrum E] : spectrum
|
||
:= spectrum.mk (psp_of_nat_indexed E) (is_spectrum_of_nat_indexed E)
|
||
|
||
-- In fact, a (pre)spectrum indexed on any pointed successor structure
|
||
-- gives rise to one indexed on +ℕ, so in this sense +ℤ is a
|
||
-- "universal" successor structure for indexing spectra.
|
||
|
||
definition succ_str.of_nat {N : succ_str} (z : N) : ℕ → N
|
||
| succ_str.of_nat zero := z
|
||
| succ_str.of_nat (succ k) := S (succ_str.of_nat k)
|
||
|
||
definition psp_of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_prespectrum N) : gen_prespectrum +ℤ :=
|
||
psp_of_nat_indexed (gen_prespectrum.mk (λn, E (succ_str.of_nat z n)) (λn, gen_prespectrum.glue E (succ_str.of_nat z n)))
|
||
|
||
definition is_spectrum_of_gen_indexed [instance] {N : succ_str} (z : N) (E : gen_prespectrum N) [H : is_spectrum E]
|
||
: is_spectrum (psp_of_gen_indexed z E) :=
|
||
begin
|
||
apply is_spectrum_of_nat_indexed, apply is_spectrum.mk, intros n, esimp, apply is_spectrum.is_equiv_glue
|
||
end
|
||
|
||
protected definition of_gen_indexed [constructor] {N : succ_str} (z : N) (E : gen_spectrum N) : spectrum :=
|
||
spectrum.mk (psp_of_gen_indexed z E) (is_spectrum_of_gen_indexed z E)
|
||
|
||
-- Generally it's easiest to define a spectrum by giving 'equiv's
|
||
-- directly. This works for any indexing succ_str.
|
||
protected definition MK {N : succ_str} (deloop : N → Type*) (glue : Π(n:N), (deloop n) ≃* (Ω (deloop (S n)))) : gen_spectrum N :=
|
||
gen_spectrum.mk (gen_prespectrum.mk deloop (λ(n:N), glue n))
|
||
(begin
|
||
apply is_spectrum.mk, intros n, esimp,
|
||
apply pequiv.to_is_equiv -- Why doesn't typeclass inference find this?
|
||
end)
|
||
|
||
-- Finally, we combine them and give a way to produce a (ℤ-)spectrum from a ℕ-indexed family of 'equiv's.
|
||
protected definition Mk (deloop : ℕ → Type*) (glue : Π(n:ℕ), (deloop n) ≃* (Ω (deloop (nat.succ n)))) : spectrum :=
|
||
spectrum.of_nat_indexed (spectrum.MK deloop glue)
|
||
|
||
------------------------------
|
||
-- Maps and homotopies of (pre)spectra
|
||
------------------------------
|
||
|
||
-- These make sense for any succ_str.
|
||
structure smap {N : succ_str} (E F : gen_prespectrum N) :=
|
||
(to_fun : Π(n:N), E n →* F n)
|
||
(glue_square : Π(n:N), glue F n ∘* to_fun n ~* Ω→ (to_fun (S n)) ∘* glue E n)
|
||
|
||
open smap
|
||
infix ` →ₛ `:30 := smap
|
||
|
||
attribute smap.to_fun [coercion]
|
||
|
||
-- A version of 'glue_square' in the spectrum case that uses 'equiv_glue'
|
||
definition sglue_square {N : succ_str} {E F : gen_spectrum N} (f : E →ₛ F) (n : N)
|
||
: equiv_glue F n ∘* f n ~* Ω→ (f (S n)) ∘* equiv_glue E n
|
||
-- I guess this manual eta-expansion is necessary because structures lack definitional eta?
|
||
:= phomotopy.mk (glue_square f n) (to_homotopy_pt (glue_square f n))
|
||
|
||
definition sid {N : succ_str} (E : gen_spectrum N) : E →ₛ E :=
|
||
smap.mk (λn, pid (E n))
|
||
(λn, calc glue E n ∘* pid (E n) ~* glue E n : comp_pid
|
||
... ~* pid (Ω(E (S n))) ∘* glue E n : pid_comp
|
||
... ~* Ω→(pid (E (S n))) ∘* glue E n : pwhisker_right (glue E n) ap1_id⁻¹*)
|
||
|
||
definition scompose {N : succ_str} {X Y Z : gen_prespectrum N} (g : Y →ₛ Z) (f : X →ₛ Y) : X →ₛ Z :=
|
||
smap.mk (λn, g n ∘* f n)
|
||
(λn, calc glue Z n ∘* to_fun g n ∘* to_fun f n
|
||
~* (glue Z n ∘* to_fun g n) ∘* to_fun f n : passoc
|
||
... ~* (Ω→(to_fun g (S n)) ∘* glue Y n) ∘* to_fun f n : pwhisker_right (to_fun f n) (glue_square g n)
|
||
... ~* Ω→(to_fun g (S n)) ∘* (glue Y n ∘* to_fun f n) : passoc
|
||
... ~* Ω→(to_fun g (S n)) ∘* (Ω→ (f (S n)) ∘* glue X n) : pwhisker_left Ω→(to_fun g (S n)) (glue_square f n)
|
||
... ~* (Ω→(to_fun g (S n)) ∘* Ω→(f (S n))) ∘* glue X n : passoc
|
||
... ~* Ω→(to_fun g (S n) ∘* to_fun f (S n)) ∘* glue X n : pwhisker_right (glue X n) (ap1_compose _ _))
|
||
|
||
infixr ` ∘ₛ `:60 := scompose
|
||
|
||
definition szero {N : succ_str} (E F : gen_prespectrum N) : E →ₛ F :=
|
||
smap.mk (λn, pconst (E n) (F n))
|
||
(λn, calc glue F n ∘* pconst (E n) (F n) ~* pconst (E n) (Ω(F (S n))) : pcompose_pconst
|
||
... ~* pconst (Ω(E (S n))) (Ω(F (S n))) ∘* glue E n : pconst_pcompose
|
||
... ~* Ω→(pconst (E (S n)) (F (S n))) ∘* glue E n : pwhisker_right (glue E n) (ap1_pconst _ _))
|
||
|
||
structure shomotopy {N : succ_str} {E F : gen_prespectrum N} (f g : E →ₛ F) :=
|
||
(to_phomotopy : Πn, f n ~* g n)
|
||
(glue_homotopy : Πn, pwhisker_left (glue F n) (to_phomotopy n) ⬝* glue_square g n
|
||
= -- Ideally this should be a "phomotopy2"
|
||
glue_square f n ⬝* pwhisker_right (glue E n) (ap1_phomotopy (to_phomotopy (S n))))
|
||
|
||
infix ` ~ₛ `:50 := shomotopy
|
||
|
||
------------------------------
|
||
-- Suspension prespectra
|
||
------------------------------
|
||
|
||
-- This should probably go in 'susp'
|
||
definition psuspn : ℕ → Type* → Type*
|
||
| psuspn 0 X := X
|
||
| psuspn (succ n) X := psusp (psuspn n X)
|
||
|
||
-- Suspension prespectra are one that's naturally indexed on the natural numbers
|
||
definition psp_susp (X : Type*) : gen_prespectrum +ℕ :=
|
||
gen_prespectrum.mk (λn, psuspn n X) (λn, loop_susp_unit (psuspn n X))
|
||
|
||
/- Truncations -/
|
||
|
||
-- We could truncate prespectra too, but since the operation
|
||
-- preserves spectra and isn't "correct" acting on prespectra
|
||
-- without spectrifying them first anyway, why bother?
|
||
definition strunc (k : ℕ₋₂) (E : spectrum) : spectrum :=
|
||
spectrum.Mk (λ(n:ℕ), ptrunc (k + n) (E n))
|
||
(λ(n:ℕ), (loop_ptrunc_pequiv (k + n) (E (succ n)))⁻¹ᵉ*
|
||
∘*ᵉ (ptrunc_pequiv_ptrunc (k + n) (equiv_glue E (int.of_nat n))))
|
||
|
||
/---------------------
|
||
Homotopy groups
|
||
---------------------/
|
||
|
||
-- Here we start to reap the rewards of using ℤ-indexing: we can
|
||
-- read off the homotopy groups without any tedious case-analysis of
|
||
-- n. We increment by 2 in order to ensure that they are all
|
||
-- automatically abelian groups.
|
||
definition shomotopy_group [constructor] (n : ℤ) (E : spectrum) : CommGroup := πag[0+2] (E (2 + n))
|
||
|
||
notation `πₛ[`:95 n:0 `] `:0 E:95 := shomotopy_group n E
|
||
|
||
/-------------------------------
|
||
Cotensor of spectra by types
|
||
-------------------------------/
|
||
|
||
-- Makes sense for any indexing succ_str. Could be done for
|
||
-- prespectra too, but as with truncation, why bother?
|
||
definition sp_cotensor {N : succ_str} (A : Type*) (B : gen_spectrum N) : gen_spectrum N :=
|
||
spectrum.MK (λn, ppmap A (B n))
|
||
(λn, (loop_pmap_commute A (B (S n)))⁻¹ᵉ* ∘*ᵉ (equiv_ppcompose_left (equiv_glue B n)))
|
||
|
||
----------------------------------------
|
||
-- Sections of parametrized spectra
|
||
----------------------------------------
|
||
|
||
definition spi {N : succ_str} (A : Type) (E : A -> gen_spectrum N) : gen_spectrum N :=
|
||
spectrum.MK (λn, ppi (λa, E a n))
|
||
(λn, (loop_ppi_commute (λa, E a (S n)))⁻¹ᵉ* ∘*ᵉ equiv_ppi_right (λa, equiv_glue (E a) n))
|
||
|
||
/-----------------------------------------
|
||
Fibers and long exact sequences
|
||
-----------------------------------------/
|
||
|
||
definition sfiber {N : succ_str} (E F : gen_spectrum N) (f : E →ₛ F) : gen_spectrum N :=
|
||
spectrum.MK (λn, pfiber (f n))
|
||
(λn, pfiber_loop_space (f (S n)) ∘*ᵉ pfiber_equiv_of_square (sglue_square f n))
|
||
|
||
structure sp_chain_complex (N : succ_str) : Type :=
|
||
(car : N → spectrum)
|
||
(fn : Π(n : N), car (S n) →ₛ car n)
|
||
(is_chain_complex : Πn, fn n ∘ₛ fn (S n) ~ₛ szero _ _)
|
||
|
||
section
|
||
variables {N : succ_str} (X : sp_chain_complex N) (n : N)
|
||
|
||
definition scc_to_car [unfold 2] [coercion] := @sp_chain_complex.car
|
||
definition scc_to_fn [unfold 2] : X (S n) →ₛ X n := sp_chain_complex.fn X n
|
||
definition scc_is_chain_complex [unfold 2] : scc_to_fn X n ∘ₛ scc_to_fn X (S n) ~ₛ szero _ _
|
||
:= sp_chain_complex.is_chain_complex X n
|
||
end
|
||
|
||
/- Mapping spectra -/
|
||
|
||
/- Spectrification -/
|
||
|
||
/- Tensor by spaces -/
|
||
|
||
/- Smash product of spectra -/
|
||
|
||
/- Cofibers and stability -/
|
||
|
||
end spectrum
|